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Causal inference using
the algorithmic Markov condition

Dominik Janzing and Bernhard Schölkopf

Abstract—Inferring the causal structure that links n observ-
ables is usually based upon detecting statistical dependences and
choosing simple graphs that make the joint measure Markovian.
Here we argue why causal inference is also possible when the
sample size is one.

We develop a theory how to generate causal graphs explaining
similarities between single objects. To this end, we replace the no-
tion of conditional stochastic independence in the causal Markov
condition with the vanishing of conditional algorithmic mutual
information and describe the corresponding causal inference
rules.

We explain why a consistent reformulation of causal inference
in terms of algorithmic complexity implies a new inference prin-
ciple that takes into account also the complexity of conditional
probability densities, making it possible to select among Markov
equivalent causal graphs. This insight provides a theoretical
foundation of a heuristic principle proposed in earlier work.

We also sketch some ideas on how to replace Kolmogorov
complexity with decidablecomplexity criteria. This can be seen
as an algorithmic analog of replacing the empirically undecidable
question of statistical independence with practical independence
tests that are based on implicit or explicit assumptions on the
underlying distribution.

keywords:algorithmic information, Church-Turing thesis, data
compression, graphical models, probability-free causal infer-
ence
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I. I NTRODUCTION TO CAUSAL INFERENCE FROM

STATISTICAL DATA

Causal inference from statistical data has attracted increas-
ing interest in the past decade. In contrast to traditional
statistics where statistical dependences are only taken toprove
that some kind of relation between random variables exists,
causal inference methods in machine learning are explicitly
designed to generate hypotheses on causal directions automat-
ically based upon statistical observations, e.g., via conditional
independence tests [1], [2]. The crucial assumption connect-
ing statistics with causality is the causal Markov condition
explained below after we have introduced some notations and
terminology.

We denote random variables by capitals and their values
by the corresponding lowercase letters. LetX1, . . . , Xn be
random variables andG be a directed acyclic graph (DAG)
representing the causal structure where an arrow from nodeXi

to nodeXj indicates a direct causal effect. Here the termdirect
is understood with respect to the chosen set of variables in
the sense that the information flow between the two variables
considered is not performed via using one or more of the
other variables as intermediate nodes. We will next briefly
rephrase the postulates that are required in the statistical theory
of inferred causation [2], [1].

A. Causal Markov condition

When we consider the causal structure that linksn random
variablesV := {X1, . . . , Xn} we will implicitly assume
that V is causally sufficient in the sense that all common
causes of two variables inV are also inV . Then a causal
hypothesisG is only acceptable as potential causal structure
if the joint distributionP (X1, . . . , Xn) satisfies the Markov
condition with respect toG. There are several formulations of
the Markov condition that are known to coincide under some
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technical conditions (see Lemma 1). We will first introduce
the following version which is sometimes referred to as the
parentalor the local Markov condition [3].

To this end, we introduce the following notations.PAj is
the set of parents ofXj andNDj the set of non-descendants
of Xj except itself. IfS, T, R are sets of random variables,
S ⊥⊥ T |R meansS is statistically independent ofT , givenR.

Postulate: statistical causal Markov condition, local version
If a directed acyclic graphG formalizes the causal structure
among the random variablesX1, . . . , Xn. Then

Xj ⊥⊥ NDj |PAj , (1)

for all j = 1, . . . , n.

The strength of violating statistical dependences is often
measured in terms of mutual information. For three sets of
variablesX, Y, Z one defines the conditional mutual informa-
tion of X andY , givenZ by [4]

I(X ; Y |Z) := H(X |Z) + H(Y |Z)−H(X, Y |Z) ,

where the Shannon entropies read as follows. Assume
that the distribution P (X1, . . . , Xk, Z) has the density
P (x1, . . . , xk, z) and a conditional densityP (x1, . . . , xk|z)
with respect to some measureµ (which may, for instance, be
the Lebesgue measure if all variables are continuous and the
counting measure if they are discrete), then we have

H(X1, . . . , Xk|Z) := −
∫

P (x1, . . . , xk, z)

× log P (x1, . . . , xk|z)dµ(x1, . . . xk, z) .

We call condition (1) thestatistical causal Markov condi-
tion because we will later introduce an algorithmic version.
The fact that conditional irrelevance not only occurs in the
context ofstatisticaldependences has been emphasized in the
literature (e.g. [5], [1]) in the context of describing abstract
properties (like semi-graphoid axioms) of the relation· ⊥⊥ · |·.
We will therefore state the causal Markov condition also in
an abstract form that does not refer to any specific notion of
conditional informational irrelevance:

Postulate: abstract causal Markov condition, local
Given all the direct causes of an observableO, its non-effects
provide no additional information onO.

Here, observables denote something in the real world that
can be observed and the observation of which can be formal-
ized in terms of a mathematical language. In this paper, observ-
ables will either be random variables (formalizing statistical
quantities) or they will be strings (formalizing the description
of objects). Accordingly, information will bestatistical or
algorithmic mutual information, respectively.

The importance of the causal Markov condition lies in the
fact that it links causal terms like “direct causes” and “non-
effects” to informational relevance of observables. The local
Markov condition is rather intuitive because it echoes the
fact that the information flows from direct causes to their
effect and every dependence between a node and its non-
descendants involves the direct causes. Conditioning on direct

causes “screens off” the relation to variables other than the
descendants. However, the independences postulated by the
local Markov condition imply additional independences. Itis
therefore hard to decide whether an independence must hold
for a Markovian distribution or not, solely on the basis of the
local formulation. In contrast, the global Markov condition
makes the complete set of independences obvious. To state
it we first have to introduce the following graph-theoretical
concept.

Definition 1 (d-separation):
A path p in a DAG is said to be blocked by a set of nodes

Z if and only if
1) p contains a chaini → m → j or a fork i ← m → j

such that the middle nodem is in Z, or
2) p contains an inverted fork (or collider)i → m ← j

such that the middle nodem is not in Z and such that
no descendant ofm is in Z.

A set Z is said to d-separateX from Y if Z blocks every
(possibly undirected) path from a node inX to a node inY .

The following Lemma shows that d-separation is the correct
condition for deciding whether an independence is implied by
the local Markov condition (see [5], Theorem 3.27):

Lemma 1 (equivalent Markov conditions):
Let P (X1, . . . , Xn) have a densityP (x1, . . . , xn) with re-

spect to a product measure. Then the following three state-
ments are equivalent:

I. Recursive form: P admits the factorization

P (x1, . . . , xn) =

n∏

j=1

P (xj |paj) , (2)

whereP (.|paj) is shorthand for the conditional probabil-
ity density, given the values of all parents ofXj .

II. Local (or parental) Markov condition: for every node
Xj we have

Xj ⊥⊥ NDj |PAj ,

i.e., it is conditionally independent of its non-descendants
(except itself), given its parents.

III. Global Markov condition:

S ⊥⊥ T |R
for all three setsS, T, R of nodes for whichS andT are
d-separated byR.

Moreover, the local and the global Markov condition are
equivalent even ifP does not have a density with respect to
a product measure.

The conditional densitiesP (xj |paj) are also called the
Markov kernelsrelative to the hypothetical causal graphG.
It is important to note that every choice of Markov kernels
define a Markovian densityP , i.e., the Markov kernels define
exactly the set of free parameters remaining after the causal
structure has been specified.

To select graphs among those for whichP satisfies the
Markov condition, we also need an additional postulate:

Postulate: causal faithfulness
Among all graphsG for which P is Markovian, prefer the
ones for which all the observed conditional independences in
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the joint measureP (X1, . . . , Xn) are imposed by the Markov
condition.

The idea is that the set of observed independences is typical
for the causal structure under consideration rather than being
the result of specific choices of the Markov kernels. This
becomes even more intuitive when we restrict our attention
to random variables with finite range and observe that the
valuesP (xj |paj) then define a natural parameterization of
the set of Markovian distributions in a finite dimensional
space. The non-faithful distributions form a submanifold of
lower dimension, i.e., a set of Lebesgue measure zero [6].
They therefore almost surely don’t occur if we assume that
“nature chooses” the Markov kernels for the different nodes
independently according to some density on the parameter
space. There are several objections against faithfulness,we
only want to mention that deterministic relations can generate
unfaithful distributions. The fact that deterministic relations
are not that uncommon shows that “nature does sometimes
choose” from sets of measure zero.

The above “zero Lebesgue measure argument” is close
to the spirit of Bayesian approaches [7], where priors on
the set of Markov kernels are specified for every possible
hypothetical causal DAG and causal inference is performed
by maximizing posterior probabilities for hypothetical DAGs,
given the observed data. This procedure leads to animplicit
preference of faithful structures in the infinite sampling limit
given appropriate conditions for the priors on the parameter
space. The assumption that “nature chooses Markov kernels
independently”, which is also part of the Bayesian approach,
will turn out to be closely related to the algorithmic Markov
condition postulated in this paper.

We now discuss the justification of the statistical causal
Markov condition because we will later justify the algorithmic
Markov condition in a similar way. To this end, we introduce
functional models [1]:

Postulate: functional model of causality
If a directed acyclic graphG formalizes the causal relation
between the random variablesX1, . . . , XN then everyXj can
be written as a deterministic function ofPAj and a noise
variable Nj ,

Xj = fj(PAj , Nj) , (3)

where allNj are jointly independent.

Note that this model does not put any mathematical re-
striction on the conditionals1 P (Xj |PAj). Given that the
joint distribution factorizes as in eq. (2) the model thus does
not restrict the set of possible joint distributions any further.
However, the functional model can be used to justify the causal
Markov condition since we have [1], Theorem 1.4.1:

Lemma 2 (Markov condition in functional models):
Every joint distributionP (X1, . . . , Xn) generated according

1To see this, letNj consist of (possibly uncountably many) real-valued
random variablesNj [paj ], one for each valuepaj of parentsPAj . Let
Nj [paj ] be distributed according toP (Xj |paj), and definefj(PAj |Nj) :=
Nj [paj ]. ThenXj |PAj obviously has distributionP (Xj |PAj).

to the functional model in Postulate 3 satisfies the local and
the global Markov condition relative toG.

We rephrase the proof in [1] because our proof for the
algorithmic version will rely on the same idea.

Proof of Lemma 2: extendG to a graph G̃ with nodes
X1, . . . , Xn, N1, . . . , Nn that additionally contains an arrow
from eachNj to Xj . The given joint distribution of noise
variables induces a joint distribution

P̃ (X1, . . . , Xn, N1, . . . , Nn) ,

that satisfies the local Markov condition with respect toG̃:
first, everyXj is completely determined by its parents making
the condition trivial. Second, everyNj is parentless and thus
we have to check that it is (unconditionally) independent of
its non-descendants. The latter are deterministic functions of
{N1, . . . , Nn} \ {Nj}. Hence the independence follows from
the joint independence of allNi.

By Lemma 1,P̃ is also globally Markovian w.r.t.̃G. Then
we observe thatNDj and Xj are d-separated iñG (where
the parents and non-descendants are defined with respect to
G), givenPAj . HenceP satisfies the local Markov condition
w.r.t. G and hence also the global Markov condition.�

Functional models formalize the idea that the outcome
of an experiment is completely determined by the values
of all relevant parameters where the only uncertainty stems
from the fact that some of these parameters are hidden.
Even though this kind of determinism is in contrast with the
commonly accepted interpretation of quantum mechanics [8],
we still consider functional models as a helpful framework
for discussing causality in real life since quantum mechanical
laws refer mainly to phenomena in micro-physics. The deter-
ministic function in functional models nicely represent causal
mechanisms that persist also after manipulating the distribution
of inputs. The framework thus formalizes the modularity of
causal structure: every function represents a causal mechanism
that exists independently of the others.

Causal inference using the Markov condition and the faith-
fulness assumption has been implemented in causal learning
algorithms [2]. The following fundamental limitations of these
methods deserve our further attention:

1) Markov equivalence:There are only few cases where the
inference rules provide unique causal graphs. Often one
ends up with aclass of Markov equivalentgraphs, i.e.,
graphs that entail the same set of independences. For
this reason, additional inference rules are desirable. In
particular, deciding whetherX causesY or Y causes
X for just two observed variables is a challenging task
for novel inference rules [9] since it is unsolvable for
independence-based methods.

2) Dependence on i.i.d. sampling:the whole setting of
causal inference relies on the ability to sample repeat-
edly and independently from the same joint distribu-
tion P (X1, . . . , Xn). As opposed to this assumption,
causal inference in real life also deals with probability
distributions that change in time. Even though there
are techniques in conventional statistics to cope with
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this problem, there are no methods for inferring causal
relations among single observations, i.e., for the case of
sample size one.

The idea of this paper is to develop a theory of probability-
free causal inference that helps to construct causal hypotheses
based on similarities ofsingle objects. Then the nodes of
the directed acyclic graph formalizing the causal structure are
single objects. Here, similarities between these objects will be
defined by comparing the length of the shortest description of
single objects to the length of their shortest joint description.
Despite the analogy to causal inference from statistical data
our theory also implies newstatisticalinference rules. In other
words, our approach to address weakness 2 also yields new
methods to address 1.

The paper is structured as follows. In the remaining part
of this Section, i.e., Subsection I-B, we describe recent ap-
proaches from the literature to causal inference from statistical
data that address problem 1 above. In Section II we develop the
general theory on inferring causal relations among individual
objects based on algorithmic information. This framework
appears, at first sight, as a straightforward adaption of the
statistical framework using well-known correspondences be-
tween statistical and algorithmic information theory. However,
Section III describes that this implies novel causal inference
rules forstatistical inference becausenon-statisticalalgorith-
mic dependences can even occur in data that were obtained
from statistical sampling. In Section IV we sketch some
ideas on how to replace causal inference rules based on the
uncomputablealgorithmic informationwith decidable criteria
that are still motivated by the uncomputable idealization.

The table in fig. 1 summarizes the analogies between the
theory of statistical and the theory of algorithmic causal
inference described in this paper. The differences, however,
which are the main subject of Sections III to IV, can hardly
be represented in the table.

B. Developing new statistical inference rules

In [10], [11] we have proposed causal inference rules
that are based on the idea that the factorization of
P (cause, effect) into P (effect|cause) andP (cause) typically
leads to simpler terms than the “artificial” factorization into
P (effect)P (cause|effect). The generalization of this principle
reads: Among all graphsG that renderP Markovian prefer the
one for which the decomposition in eq. (2) yields the simplest
Markov kernels. We have called this vague idea the “principle
of plausible Markov kernels”.

Before we describe several options to define simplicity
we describe a simple example to illustrate the idea. Assume
we have observed that a binary variableX (with values
x = −1, 1) and a continuous variableY with values inR

that are distributed according to a mixture of two Gaussians
(see fig. 2). Since this will simplify the further discussionlet
us assume that the two components are equally weighted, i.e.,

P (x, y) =
1

2

1

σ
√

2π
e−

(y−µ−xλ)2

2σ2 ,

Fig. 2. Observed joint distribution ofX and Y consisting of two
Gaussians of equal width shifted against each other.

whereλ determines the shift of the mean caused by switching
betweenx = 1 andx = −1.

The marginalP (Y ) is given by

P (y) =
1

2

1

σ
√

2π

(
e−

(y−µ+λ)2

2σ2 + e−
(y−µ−λ)2

2σ2

)
. (4)

One will prefer the causal structureX → Y compared to
Y → X because the former explains in a natural way why
P (Y ) is bimodal: the effect ofX on Y is simply to shift the
Gaussian distribution by2λ. In the latter model the bimodality
of P (Y ) remains unexplained.2 To prefer one causal model
to another one because the corresponding conditionals are
simpler seems to be a natural application of Occam’s Razor.
However, Section III will show that such an inference rule
also follows from the theory developed in the present paper
when simplicity is meant in the sense of low Kolmogorov
complexity. In the remaining part of this section we will sketch
some approaches to implement the “principle of plausible
Markov kernels” in practical applications.

In [10] we have defined a family of “plausible Markov
kernels” by conditionalsP (Xj |PAj) that are second order
exponential models, i.e.,log P (xj |paj) is a polynomial of
order two in the variables{Xj} ∪ {PAj} up to some ad-
ditive partition function (for normalization) that depends only
on the variablesPAj . For every hypothetical causal graph,
one thus obtains a family of “plausible joint distributions
P (X1, . . . , Xn)” that are products of the plausible Markov
kernels. Then we prefer the causal direction for which the
plausible joint distributions provide the best fit for the given
observations.

In [11] we have proposed the following principle for causal
inference: Given a joint distribution of the random variables
X1, . . . , Xn, prefer a causal structure for which

n∑

j=1

C(P (Xj |PAj)) (5)

is minimal, whereC is some complexity measure on condi-
tional probability densities.

2Using Reichenbach’s terminology [12] and Salmon’s “mark transmission
theory” [13], the cause leaves “some kind of mark on its effect”: here, the
distributionP (X) can be identified from separating the two modes ofP (Y ).
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statistical algorithmic

observables random variables sequences of strings
(vertices of a DAG)

observations i.i.d. sampled data strings

conditional independence X ⊥⊥ Y |Z x ⊥⊥ y |z
..

m
..

m
I(X ; Y |Z) = 0 I(x : y|z)

+
= 0

I. recursion formula P (x1, . . . , xn) K(x1, . . . , xn)
= =∏

j P (xj |paj)
∑

j K(xj |pa∗
j)

II. local Markov condition Xj ⊥⊥ NDj |PAj xj ⊥⊥ ndj |pa∗
j

III. global Markov d-separation d-separation
condition ⇒ ⇒

statistical independence algorithmic independence

equivalence of I-III Theorem 3.27 Theorem 3
in [5]

functional models Section 1.4 Eq. (21)
in [1]

functional models Theorem 1.4.1 Theorem 4
imply Markov condition in [1]

decidable dependence assumptions on Section IV
criteria joint distribution

Fig. 1. Analogies between statistical and algorithmic causal inference

There is also another recent proposal for new inference
rules that refers to a related simplicity assumption, though
formally quite different from the ones above. The authors of
[14] observe that there are joint distributions ofX1, . . . , Xn

that can be explained by a linear model with additive non-
Gaussian noise for one causal direction but require non-linear
causal influence for the other causal directions. For real data
they prefer the causal graph for which the observations are
closer to the linear model.

To justify the belief that conditionals that correspond to
the true causal direction tend to be simpler than non-causal
conditionals (which is common to all the approaches above)
is one of the main goals of this paper.

II. I NFERRING CAUSAL RELATIONS AMONG INDIVIDUAL

OBJECTS

It has been emphasized [1] that the application of causal
inference principles often benefits from the non-determinism
of causal relations between the observed random variables.
In contrast, human learning in real-life often is about quite
deterministic relations. Apart from that, the most important

difference between human causal learning and the inference
rules in [2], [1] is that the former is also about causal
relations amongsingleobjects and does not necessarily require
sampling. Assume, for instance, that the comparison of two
texts show similarities (see e.g. [15]) such that the authorof
the text that appeared later is blamed to have copied it from the
other one or both are blamed to have copied from a third one.
The statement that the texts are similar could be based on a
statistical analysis of the occurrences of certain words orletter
sequences. However, such kind of simple statistical tests can
fail in both directions: In Subsection II-B (before Theorem3)
we will discuss an example showing that they can erroneously
infer causal relations even though they do not exist. This is
because parts that are common to both objects, e.g., the two
texts, are only suitable to prove a causal link if they are not
“too straightforward” to come up with.

On the other hand, causal relations can generate similarities
between texts for which everyefficientstatistical analysis is
believed to fail. We will describe an idea from cryptographyto
show this. A cryptosystem is called ROR-CCA-secure (Real
or Random under Chosen Ciphertext Attacks) if there is no



6

efficient method to decide whether a text is random or the
encrypted version of someknowntext without knowing the key
[16]. Given that there are ROR-CCA-secure schemes (which
is unknown but believed by cryptographers) we have a causal
relation leading to similarities that are not detected by any kind
of simple counting statistics. However, once an attacker has
found the key (maybe by exhaustive search), he/she recognizes
similarities between the encrypted text and the plain text and
infers a causal relation. The causal relation between plaintext
and its encrypted version leads to a “similarity” that is not
efficientlydetectable.

This already suggests two things: (1) detecting similarities
involvessearchingover potential rules how properties of one
object can be algorithmically derived from the structure ofthe
other. (2) It is possible that inferring causal relations therefore
relies oncomputationally infeasibledecisions (if computable
at all) on whether two objects have information in common
or not.

A. Algorithmic mutual information

We will now describe how the information one object pro-
vides about the other can be measured in terms of Kolmogorov
complexity. We start with some notation and terminology.
Below, strings will always be binary strings since every
description given in terms of a different alphabet can be
converted into a binary word. The set of binary strings of
arbitrary length will be denoted by{0, 1}∗. Recall that the Kol-
mogorov complexityK(s) of a strings ∈ {0, 1}∗ is defined
as the length of the shortest program that generatess using
a previously defined universal prefix Turing machine [17],
[18], [19], [20], [21], [4], [22]. The conditional Kolmogorov
complexityK(t|s) [4] of a string t given another strings is
the length of the shortest program that can generatet from s.
In order to keep our notation simple we useK(x, y) to refer
to the complexity of the concatenationx′y wherex′ is a prefix
code ofx (equivalently, one can also define a stringx, y from
the pair(x, y) using a standard bijection betweenN× N and
N).

We will mostly have equations that are valid only up to
additive constant terms in the sense that the difference between
both sides does not depend on the strings involved in the
equation (but it may depend on the Turing machines they refer
to). To indicate such constants we denote the corresponding
equality by

+
= and likewise for inequalities. In this context

it is important to note that the numbern of nodes of the
causal graph is considered to be a constant. Moreover, for
every strings we defines∗ as its shortest description. If the
latter is not unique, we consider the first one in a lexico-
graphic order. It is necessary to distinguish betweenK(·|s)
and K(·|s∗). This is because there is a trivial algorithmic
method to generates from s∗ (just apply the Turing machine
to s∗), but there is no algorithm that computes the shortest
descriptions∗ from a general inputs. One can show [22] that
knowing s∗ is equivalent to knowing the pair(s, K(s)) since
K(s∗|s, K(s))

+
= K(s, K(s)|s∗) +

= 0. The following equation
for the joint algorithmic information of two stringsx, y will

be useful [23]:

K(x, y)
+
= K(x) + K(y|x∗) = K(x) + K(y|x, K(x)) . (6)

The conditional version reads [23]:

K(x, y|z)
+
= K(x|z) + K(y|x, K(x|z), z) (7)

The most important notion in this paper will be the algorith-
mic mutual information measuring the amount of algorithmic
information that two objects have in common. Following the
literature (e.g. [24], [25]) we define:

Definition 2 (algorithmic mutual information):
Let x, y be two strings. Then the algorithmic mutual infor-

mation ofx, y is

I(x : y) := K(y)−K(y|x∗) .

The mutual information is the number of bits that can be
saved in the description ofy when the shortest description of
x is already known. The fact that one usesx∗ instead ofx
ensures that it coincides with the symmetric expression [23]:

Lemma 3 (symmetric version of algorithmic mutual inf.):
For two stringsx, y we have

I(x : y)
+
= K(x) + K(y)−K(x, y) .

In the following sections, non-vanishing mutual information
will be taken as an indicator for causal relations, but more
detailed information on the causal structure will be inferred
from conditional mutual information. This is in contrast to
approaches from the literature to measure similarity versus
differences of single objects that we briefly review now. To
measure differences between single objects, e.g. pictures[26],
[27], one defines theinformation distanceE(x, y) between the
two corresponding strings as the length of the shortest program
that computesx from y and y from x. It can be shown [28]
that

E(x, y)
+
= max{K(x|y), K(y|x)} .

However, whetherE(x, y) is small or large is not an appropri-
ate condition for the existence and the strength of a causal link.
Complex objects can have much information in common even
though their distance is large. In order to obtain a measure
relating the amount of information that is disjoint for the two
strings to the amount they share, Li et al. [27] and Bennett et
al. [15] use the “normalized distance measure”

ds(x, y) :=
K(x|y∗)−K(y|x∗)

K(x, y)

+
= 1− I(x : y)

K(x, y)
,

or

d(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} .

The intuitive meaning ofds(x, y) is obvious from its direct
relation to mutual information, and1 − d(x, y) measures the
fraction of the information of the more complex string that
is shared with the other one. Bennett et al. [15] propose to
construct evolutionary histories of chain letters using such
kinds of information distance measures. The algorithmic mu-
tual information to measure the similarity of two objects has,
for instance, been used in [29], [30]. However, like in statistical
causal inference, inferring adjacencies on the basis of strongest
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Fig. 3. Even though senderS and receiverR are non-adjacent,
they are the pair with maximal mutual information (for the scenario
described in the text).

dependences is only possible for simple causal structures
like trees. In the general case, non-adjacent nodes can share
more information than adjacent ones when information is
propagated via more than one path. To see this, consider
the “diamond graph” shown in fig. 3: The senderS has two
generic stringsa, b. He/she copies the information and sends
a to the intermediate nodeN1 and b to N2. Then,N1 and
N2 copy their strings and send them to the receiverR. The
pair mazimizing the mutual information is(R, S) (because we
haveI(R : S) = K(a, b) and the others share at mosta or b)
even though they are not adjacent.

Instead of constructing causal neighborhood relations by
comparing information distances we will therefore usecondi-
tional mutual information. ‘In order to define its algorithmic
version, we first observe that Definition 2 can be rewritten into
the less concise form

I(x : y)
+
= K(y)−K(y|x, K(x)) .

This formula generalizes more naturally to the conditional
analog [23]:

Definition 3 (conditional algorithmic mutual information):

Let x, y, z be three strings. Then the conditional mutual
algorithmic information ofx, y, givenz is

I(x : y|z) := K(y|z)−K(y|x, K(x|z), z) .

As shown in [23] (Remark II.3), the conditional mutual
information also is symmetric up to a constant term:

Lemma 4 (symmetric algorithmic conditional mutual inf.):

For three stringsx, y, z one has:

I(x : y|z)
+
= K(x|z) + K(y|z)−K(x, y|z) .

Definition 4 (algorithmic conditional independence):
Given three stringsx, y, z, we call x conditionally indepen-

dent ofy, givenz (denoted byx ⊥⊥ y |z) if

I(x : y|z) ≈ 0 .

In words: Givenz, the additional knowledge ofy does not
allow us a stronger compression ofx. This remains true if we
are given the Kolmogorov complexity ofy, givenz.

The theory developed below will describe laws where
symbols likex, y, z represent arbitrary strings. Then one can
always think ofsequencesof strings of increasing complexity
and statements like “the equation holds up to constant terms”
are well-defined. We will then understand conditional inde-
pendence in the sense ofI(x : y|z)

+
= 0. However, if we are

talking about three fixed strings that represent objects inreal-
life, this does not make sense and the threshold for considering
two strings dependent will heavily depend on the context. For
this reason, we will not specify the symbol≈ any further.
This is the same arbitrariness as the cutoff rate for statistical
dependence tests.

The definitions and lemmas presented so far were strongly
motivated by the statistical analog. Now we want to focus on
a theorem in [25] that provides a mathematical relationship
between algorithmic and statistical mutual information. First
we state the following theorem (see Theorem 7.3.1 of [4]
and Brudno’s Theorem [31]), showing that the Kolmogorov
complexity of a random string is approximatively given by
the entropy of the underlying probability distribution:

Theorem 1 (entropy and Kolmogorov complexity):
Let x = x1, x2, · · · , xn be a string whose symbolsxj ∈ A

are drawn i.i.d. from a probability distributionP (X) over the
finite alphabetA. Slightly overloading notation, setP (x) :=
P (x1) · · ·P (xn). Let H(.) denote the Shannon entropy of a
probability distribution. Then there is a constantc such that

H(X) ≤ 1

n
E(K(x|n)) ≤ H(X) +

|A| log n

n
+

c

n
∀n ,

whereE(.) is short hand for the expected value with respect
to P (x). Moreover,

lim
n→∞

1

n
K(x) = H(X) with probability1 .

However, for our purpose, we need to see the relation
between algorithmic and statisticalmutual information. If
x = x1, x2, · · · , xn and y = y1, y2, · · · , yn such that each
pair (xj , yj) is drawn i.i.d. from a joint distributionP (X, Y ),
the theorem already shows that

lim
n→∞

1

n
E(I(x : y)) = I(X ; Y ) .

This can be seen by writing statistical mutual information as

I(X ; Y ) = H(X) + H(Y )−H(X, Y ) .

The above translations between entropy and algorithmic
information refer to a particular setting and to special limits.
The focus of this paper is mainly the situation where the above
limits are not justified. Before we rephrase Lemma II.4 in [23]
which provides insights into the general case, we recall that a
functionf is called recursive if there is a program on a Turing
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machine that computesf(x) from the inputx, and halts on
all possible inputs.

Theorem 2 (statistical and algorithmic mutual information):
Given string-valued random variablesX, Y with a recursive

probability mass functionP (x, y) over pairs(x, y) of strings.
We then have

I(X ; Y )−K(P )
+
≤ E(I(x : y))

+
≤ I(X ; Y ) + 2K(P ) ,

whereK(P ) is the length of the shortest prefix-free program
that computesP (x, y) from (x, y).

We want to provide an intuition about various aspects of
this theorem.

(1) If I(X ; Y ) is large compared toK(P ) the expected
algorithmic mutual information is dominated by the statistical
mutual information.

(2) If K(P ) is no longer assumed to be small, statistical
dependences do not necessarily ensure that the knowledge
of x allows us to compressy further than without knowing
x. It could be that the description of the statistical depen-
dences requires more memory space than its knowledge would
save. To see this, consider a distributionP (X, Y ) on pairs
of binary words that is supported by theℓ different pairs
(c1, d1), . . . , (cℓ, dℓ) with

(cj , dj) ∈ {0, 1}n × {0, 1}n .

Assume that all these wordsci, dj are jointly algorithmically
independent. If we drawm pairs(x1, y1), . . . , (xm, ym) from
this distribution withm ≪ ℓ, then all pairs will be different
with high probability. Hence, the stringx := x1, . . . , xm will
be algorithmically independent ofy := y1, . . . , yℓ. If the joint
distribution is given, we can usex to compressy further than
without knowingx (because the occurrence ofxj = ci implies
yj = di). However, first describingP (X, Y ) in order to get a
better compression ofy would not be economical due to the
high description complexity ofP (X, Y ). Despite the statistical
dependence,x does not help for better compressingy.

(3) On the other hand, knowledge ofx could allow us to
compressy even in the case of a product distribution onX
andY . Consider, for instance, the following case. LetX and
Y attain values in the space{0, 1}n, i.e., binary words of
length n. Let P (X) and P (Y ) both have point mass on the
same stringc ∈ {0, 1}n andK(c) not negligible (n must be
large). ThenI(X ; Y ) = 0 because the joint distribution is
obviously given byP (X, Y ) = P (X)P (Y ). After sampling
from P (X, Y ) we observe algorithmic dependences between
the list of x-values and the list ofy-values because they
coincide. The algorithmic dependences are thus due to the
fact that both variables share the same distribution and that
the description length of the latter is significant.

The example (3) is only a very simple instance of a proba-
bility distribution whose algorithmic information is significant.
We now introduce a more sophisticated family of distributions
on {0, 1}n with high complexity (generalizing the above case)
that we need several times throughout the paper:

Definition 5 (product distributions from strings):
Let P0, P1 be two probability distributions on{0, 1} and c

be a binary string of lengthn. Then

Pc := Pc1 ⊗ Pc2 ⊗ · · · ⊗ Pcn

defines a product measure on{0, 1}n. We will later also need
the following generalization: IfP00, P01, P10, P11 are four
distributions on{0, 1}, andc, d ∈ {0, 1}n, then

Pc,d := Pc1,d1 ⊗ Pc2,d2 ⊗ · · · ⊗ Pcn,dn

defines also a family of product measures on{0, 1}n that is
labeled by two stringsc, d.

Denote byP⊗m
c them-fold copy ofPc from Definition 5. It

describes a distribution on{0, 1}nm assigning the probbaility
P⊗m

c (x) to x ∈ {0, 1}nm. If

Q(x, y) := P⊗m
c (x)P⊗m

c (y) ,

knowledge ofx in the typical case provides knowledge of
c, provided thatm is large enough. Then we can compress
y better than without knowingx because we do not have
to describec a second time. Hence the algorithmic mutual
information is large and the statistical mutual information
is zero becauseQ is by construction a product distribution.
In other words, algorithmic dependences in a setting with
i.i.d. sampling can arise from statistical dependences andfrom
algorithmic dependences between probability distributions.

B. Markov condition for algorithmic dependences among in-
dividual objects

Now we state the causal Markov condition for individual ob-
jects as a postulate that links algorithmic mutual dependences
with causal structure:

Postulate: algorithmic causal Markov condition
Letx1, . . . , xn ben strings representing descriptions of obser-
vations whose causal connections are formalized by a directed
acyclic graphG with x1, . . . , xn as nodes. Letpaj be the
concatenation of all parents ofxj and ndj the concatenation
of all its non-descendants exceptxj itself. Then

xj ⊥⊥ ndj |pa∗
j . (8)

As in Definition 4, the appropriate cut-off rate for rejecting
G when I(xj : ndj |pa∗

j ) > 0 will not be specified here.
Note that the order of concatenating strings intondj and

paj is irrelevant for the above statetements becausen is
considered constant and there is thus only a constant overhead
to describe an ordering of a set of nodes. The postulate is a
natural interpretation of the abstract causal Markov condition
in terms of algorithmic independences. The only point that
remains to be justified is why we condition onpa∗

j instead of
paj, i.e., why we are given the optimal joint compression of
the parent strings. The main reason is that this turns out to
yield nice statements on the equivalence of different Markov
conditions (in analogy to Lemma 1). Since the differences
betweenI(xj : ndj |paj) and I(xj : ndj |pa∗

j ) can only be
logarithmic in the string lengths3 we will not focus on this
issue any further.

3this is becauseK(x|y) − K(x|y∗) = O(log |y|), where|y| denotes the
length ofy (see [22])
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If we apply Postulate 8 to a trivial graph consisting of two
disconnected nodes, we obtain the following statement.

Lemma 5 (no algorithmic mutual inf. without causation):
If the mutual informationI(x : y) between two objectsx, y is
significantly greater than zero they have some kind of common
past.

Here, common past between two objects means that one
has causally influenced the other or there is a third one
influencing both. The statistical version of this principleis part
of Reichenbach’s principle of the common cause [32] stating
that statistical dependences between random variables4 X and
Y are always due to at least one of the following three types
of causal links: (1)X is a cause ofY , or (2) vice versa, or (3)
there is a common causeZ. For objects, the term “common
past” includes all three types of causal relations. For two texts
x andy, for instance, it reads: similarities ofx, y indicate that
one author has been influenced by the other or that both have
been influenced by a third one.

Before we construct a model of causality that makes it
possible to prove the causal Markov condition we want to
discuss some examples. If one discovers significant similarities
in the genome of two sorts of animals one will try to
explain the similarities by relatedness in the sense of evolution.
Usually, one would, for instance, assume such a common
history if one has identifiedlong substrings that both animals
have in common. However, the following scenario shows two
observations that superficially look similar, but nevertheless we
cannot infer a common past since their algorithmic complexity
is low (implying that the algorithmic mutual information is
low, too).

Assume two persons are instructed to write down a binary
string of length1000 and both decide to write the same string
x = 1100100100001111110.... It seems straightforward to
assume that the persons have communicated and agreed upon
this choice. However, after observing thatx is just the binary
representation ofπ, one can easily imagine that it was just
a coincidence that both subjects wrote the same sequence.
In other words, the similarities are no longer significant after
observing that they stem from asimplerule. This shows that
the lengthof the pattern that is common to both observations,
is not a reasonable criterion on whether the similarities are
significant.

To understand the algorithmic causal Markov condition
we will study its implications as well as its justification. In
analogy to Lemma 1 we have

Theorem 3 (equiv. of algorithmic Markov conditions):
Given the stringsx1, . . . , xn and a directed acyclic graphG.

Then the following conditions are equivalent:

I. Recursive form: the joint complexity is given by the
sum of complexities of each node, given the optimal
compression of its parents:

K(x1, . . . , xn)
+
=

n∑

j=1

K(xj |pa∗
j ) (9)

4The original formulation considers actually dependences between events,
i.e., binary variables.

II. Local Markov condition: Every node is independent of
its non-descendants, given the optimal compression of its
parents:

I(xj : ndj |pa∗
j )

+
= 0 .

III. Global Markov condition:

I(S : T |R∗)
+
= 0

if R d-separatesS andT .
Below we will therefore no longer distinguish between the

different versions and just refer to “the algorithmic Markov
condition”. The intuitive meaning of eq. (9) is that the shortest
description of all strings generated by the causal model is
given by describing how to generate every string from its direct
causes. A similar kind of “modularity” of descriptions willalso
occur later in a different context when we consider description
complexity of joint probability distributions.

For the proof of Theorem 3 we will need a Lemma that is
an analog of the observation that for any two random variables
X, Y the statistical mutual information satisfiesI(f(X); Y ) ≤
I(X ; Y ) for every measurable functionf . The algorithmic
version is to consider two stringsx, y and one stringz that is
derived fromx∗ by a simple rule.

Lemma 6 (monotonicity of algorithmic information):
Let x, y, z be three strings such thatK(z|x∗)

+
= 0. Then

I(z : y)
+
≤ I(x : y) .

This lemma is a special case of Theorem II.7 in [23]. We
will also need the following result:

Lemma 7 (monotonicity of conditional information):
Let x, y, z be three strings. Then

K(z|x∗)
+
≥ K(z|(x, y)∗) .

Note that K(z|x∗)
+
≥ K(z|x∗, y) and K(z|x∗)

+
≥

K(z|x∗, y∗) is obvious but Lemma 7 is non-trivial because
the star operation isjointly applied tox andy.

Proof of Lemma 7: Clearly the stringx can be derived from
x, y by a program of lengthO(1). Lemma 6 therefore implies

I(z : x)
+
≤ I(z : x, y) ,

whereI(z : x, y) is shorthand forI(z : (x, y)). Hence

K(z)−K(z|x∗)
+
= I(z : x)

+
≤ I(z : x, y)

+
= K(z)−K(z|(x, y)∗) .

Then we obtain the statement by subtractingK(z) and invert-
ing the sign.�

The following lemma will only be used in Subsection III-C.
We state it here because it is closely related to the ones above.

Lemma 8 (generalized data processing inequality):
For any three stringsx, y, z,

I(x : y|z∗) +
= 0

implies

I(x : y)
+
≤ I(x : z) .
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The name “data processing inequality” is justified because
the assumptionx ⊥⊥ y |z∗ may arise from the typical data
processing scenario wherey is obtained fromx via z.

Proof of Lemma 8: Using Lemma 7 we have

K(x|y∗)
+
≥ K(x|(z, y)∗) (10)
+
= K(x|z, y, K(y, z))
+
= K(x|z, y, K(z) + K(y|z∗))
+
≥ K(x|z, y, K(z), K(y|z∗))
+
= K(x|z∗, y, K(y|z∗)) ,

where the second inequality holds becauseK(z) + K(y|z∗)
can obviously be computed from the pair(K(z), K(y|z∗)) by
an O(1) program. The last equality uses, again, the equiva-
lence ofz∗ and (z, K(z)). Hence we obtain:

I(x : y)
+
= K(x)−K(x|y∗)
+
= K(x|z∗) + I(x : z)−K(x|y∗)
+
≤ K(x|z∗) + I(x : z)−K(x|y, K(y|z∗), z∗)
+
= I(x : z) + I(x : y|z∗) +

= I(x : z) .

The first step is by Definition 2, the second one uses Lemma 7,
the third step is a direct application of ineq. (10), the fourth
one is due to Definition 3, and the last step is by assumption.
�

Proof of Theorem 3: I⇒ III: Define a probability mass func-
tion P on ({0, 1}∗)n (which formalizes then-fold cartesian
product of the set of strings{0, 1}∗), as follows. Set

P (xj |paj) :=
1

zj
2−K(xj|pa∗

j ) , (11)

where zj is a normalization factor. In this context, it is
important that the symbolpaj on the left hand side refers
to conditioning on thek-tuple of stringsxi that are parents
of xj (in contrast to conditional complexities where we can
interpretK(.|pa∗

j ) equally well as conditioning ononestring
given by theconcatenationof all thosexi).

K(xj |pa∗
j )

+
= − log2 P (xj |paj) .

Then we set

P (x1, . . . , xn) :=

n∏

j=1

P (xj |paj) , (12)

i.e., P satisfies the factorization property with respect toG. It
is easy to see thatK(x1, . . . , xn) can be determined fromP
using eq. (2):

K(x1, . . . , xn)
+
=

n∑

j=1

K(xj |pa∗
j ) (13)

+
= −

n∑

j=1

log2 P (xj |paj)

= − log2 P (x1, . . . , xn) .

Remarkably, we can also determine Kolmogorov complexities
of subsetsof {x1, . . . , xn} from the corresponding marginal
probabilities. We start by proving

K(x1, . . . , xn−1)
+
= − log2

∑

xn

2−K(x1,...,xn) . (14)

Note that Kraft’s inequality (see [22], Example 3.3.1) implies
∑

x

2−K(x|y) ≤ 1 ,

for any two stringsx andy. On the other hand,
∑

x

2−K(x|y) ≥ 2−K(x0|y) ,

where x0 is the shortest string allowed in the prefix code.
Hence5 ∑

x

2−K(x|y) ×
= 1 , (15)

where
×
= denotes equality up to a positive multiplicative

constant.
Eq. (15) entails

∑

xn

2−K(x1,...,xn) ×
=

∑

xn

2−K(x1,...,xn−1)−K(xn|(x1,...,xn−1)
∗)

×
= 2−K(x1,...,xn−1) .

Using eq. (13) we obtain eq. (14):

K(x1, . . . , xn−1)
+
= − log2

∑

xn

2−K(x1,...,xn)

+
= − log2

∑

xn

P (x1, . . . , xn)

+
= − log2 P (x1, . . . , xn−1) .

Since the same argument holds for marginalizing over any
other variablexj we conclude that

K(xj1 , . . . , xjk
)

+
= − log2 P (xj1 , . . . , xjk

) , (16)

for every subset of strings of sizek with k ≤ n. This follows
by induction overn− k.

Now we can use the relation between marginal probabil-
ities and Kolmogorov complexities to show that conditional
complexities are also given by the correspondingconditional
probabilities, i.e., for any two subsetsS, T ⊂ {x1, . . . , xn}
we have

K(S|T ∗)
+
= − log2 P (S|T ) .

Without loss of generality, setS := {x1, . . . , xj} and T :=
{xj+1, . . . , xk} for j < k ≤ n. Using eqs. (6) and (16) we

5Note that eq. (14) also follows easily from

X

x with f(x)=y

2−K(x) ×

= 2−K(y) for K(f) = O(1) ,

(shown in [33], eq. (11f)) by settingf(z) := z1, ..., zn−1 if z = z1, ..., zn

and undefined ifz is not of this form.
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get

K(x1, . . . , xj |(xj+1, . . . , xk)∗)
+
= K(x1, . . . , xk)−K(xj+1, . . . , xk)
+
= − log2

(
P (x1, . . . , xk)/P (xj+1, . . . , xk)

)

+
= − log2 P (x1, . . . , xj |xj+1, . . . , xk) .

Let S, T, R be three subsets of{x1, . . . , xn} such thatR d-
separatesS andT . ThenS ⊥⊥ T |R with respect toP because
P satisfies the recursion (12) (see Lemma 1)6. Hence

K(S, T |R∗)
+
= − log2 P (S, T |R)
+
= − logP (S|R)− log2 P (T |R)
+
= K(S|R∗) + K(S|R∗) .

This proves algorithmic independence ofS andT , given R∗

and thus I⇒ III.
To show that III⇒ II it suffices to recall thatndj andxj are

d-separated bypaj . Now we show II⇒ I in strong analogy
to the proof for the statistical version of this statement in[3]:
Consider first a terminal node ofG. Assume, without loss
of generality, that it isxn. Hence all stringsx1, . . . , xn−1

are non-descendants ofxn. We thus have(ndn, pan) ≡
(x1, . . . , xn−1) where≡ means that both strings coincide up
to a permutation (on one side) and removing those strings that
occur twice (on the other side). Due to eq. (6) we have

K(x1, . . . , xn)
+
= K(x1, . . . , xn−1) + K(xn|(ndn, pan)∗) .

(17)
Using, again, the equivalence ofw∗ ≡ (w, K(w)) for any
string w we have

K(xn|(ndn, pan)∗)
+
= K(xn|ndn, pan, K(ndn, pan))
+
= K(xn|ndn, pan, K(pan) + K(ndn|pa∗

n))
+
≥ K(xn|ndn, pa∗

n, K(ndn|pa∗
n))

+
= K(xn|pa∗

n) . (18)

The second step follows from K(ndn, pan)
+
=

K(pan) + K(ndn|pa∗
n). The inequality holds because

ndn, pan, K(pan) + K(ndn|pa∗
n) can be computed from

ndn, pa∗
n, K(ndn|pa∗

n) via a program of lengthO(1). The
last step follows directly from the assumptionxn ⊥⊥ ndn |pa∗

n.
Combining ineq. (18) with Lemma 7 yields

K(xn|(ndn, pan)∗)
+
= K(xn|pa∗

n) . (19)

Combining eqs. (19) and (17) we obtain

K(x1, . . . , xn)
+
= K(x1, . . . , xn−1) + K(xn|pa∗

n) . (20)

Then statement I follows by induction overn. �

6Since P is, by construction, a discrete probability function, the density
with respect to a product measure is directly given by the probability mass
function itself.

To show that the algorithmic Markov condition can be derived
from an algorithmic version of the functional model in Postu-
late 3 we introduce the following model of causal mechanisms.

Postulate: algorithmic model of causality
Let G be a DAG formalizing the causal structure among the
stringsx1, . . . , xn. Then everyxj is computed by a program
qj with lengthO(1) from its parentspaj and an additional
input nj. We write formally

xj = qj(paj, nj) , (21)

meaning that the Turing machine computesxj from the input
paj, nj using the additional programqj and halts. The inputs
nj are jointly independent in the sense

nj ⊥⊥ n1, . . . , nj−1, nj+1, . . . , nn .

We could also have assumed thatxj is a function fj of
all its parents, but our model is more general since the map
defined by the input-output behavior ofqj need not be a total
function [22], i.e., the Turing machine simulating the process
would not necessarily halt onall inputspaj , nj.

The idea to represent causal mechanisms by programs writ-
ten for some universal Turing machine is basically in the spirit
of various interpretations of the Church-Turing thesis. One
formulation, given by Deutsch [34], states that every process
taking place in the real world can be simulated by a Turing
machine. Here we assume that the way different systems
influence each other by physical signals can be simulated by
computation processes that exchange messages of bit strings.7

Note that mathematics also allows us to construct strings
that are linked to each other in anuncomputableway. For
instance, letx be an arbitrary binary string andy be defined
by y := K(x). However, it is hard to believe that a real
causal mechanism could create such kind of relations between
objects given that one believes that real processes can always
be simulated by algorithms. These remarks are intended to
give sufficient motivation for our model.

The algorithmic model of causality implies the algorithmic
causal Markov condition:

Theorem 4 (algorithmic model implies Markov):
Let x1, . . . , xn be generated by the model in eq. (21). Then

they satisfy the algorithmic Markov condition with respectto
G.
Proof : First we observe that the model class defined by
our algorithmic model of causality becomes larger if we
assume that every node is computed from(paj , nj)

∗ instead

7Note, however, that sending quantum systems between the nodes could
transmit a kind of information (“quantum information” [35]) that cannot
be phrased in terms of bits. It is known that this enables completely
new communication scenarios, e.g. quantum cryptography. The relevance of
quantum information transfer for causal inference is not yet fully understood.
It has, for instance, been shown that the violation of Bell’sinequality in
quantum theory is also relevant for causal inference [36]. This is because
some causal inference rules between classical variables break down when the
latent factors are represented byquantumstates rather than being classical
variables.
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of (paj , nj). While (21) seems more natural from the per-
spective of interpretation (why should nature have access to
theshortest compressionof (paj , nj) ?), it is remarkable from
the mathematical point of view that the proof below only uses
the weaker assumption

xj = q′j((paj , nj)
∗) , (22)

for someO(1)-programq′j .
The arguments below are similar to the proof of

Lemma 2: ExtendG to a causal structurẽG with nodes
x1, . . . , xn, n1, . . . , nn. To see that the extended set of nodes
satisfy the local Markov condition w.r.t.̃G, observe first that

K(xj |p̃a
∗
j )

+
= 0 ,

wherep̃aj := (paj , nj) denotes the parents ofxj with respect
to G̃. This follows from (22). Hence,

xj ⊥⊥ ñdj |p̃a
∗
j ,

if ñdj denotes the non-descendants ofxj with respect toG̃.
Since everynj is parentless, it remains to show that

nj ⊥⊥ n̂dj ,

if n̂dj denotes the non-descendants ofnj . Introducing the
notation

n−j := n1, . . . , nj−1, nj+1, . . . , nn ,

we have assumed
nj ⊥⊥ n−j . (23)

We now show that the non-descendants ofnj can be obtained
from n∗

−j via anO(1)-program, i.e.,

K(n̂dj |n∗
−j)

+
= 0 . (24)

Let
xk1 , . . . , xkℓ

:= n̂dj

denote the non-descendants ofnj apart fromn−j , written in
a causal order. Then everyxki

for i = 1, . . . , kℓ is computed
from its parents andnki

via the programqki
. Hence,

K(xki
|(paki

, nki
)∗)

+
= 0 .

Due to Lemma 7, this implies

K(xki
|(xk1 , . . . , xki−1 , nki

)∗)
+
= 0 . (25)

Hence,

K(xki
|n∗

−j)
+
≤ K(xk1 , . . . , xki

|n∗
−j)

+
= K(xki

|(xk1 , . . . , xki−1 , nki
)∗)

+K(xk1 , . . . , xki−1 |n∗
−j)

+
≤

i−1∑

r=1

K(xkr
|n∗

−j) .

The first inequality is obvious, the equality uses eqs. (25) and
(6). By induction overi, we thus obtain

K(xki
|n∗

−j)
+
= 0 ,

which implies eq. (24). Together with (23), this yields

nj ⊥⊥ n̂dj ,

due to Lemma 6. Hence, the extended set of strings
x1, . . . , xn, n1, . . . , nn satisfies the local Markov condition
with respect toG̃. By Theorem 3, the extended set of nodes is
also globally Markovian w.r.t.G̃. The parentspaj d-separate
xj and ndj in G̃ (here the parentspaj are still defined with
respect toG). This implies the local Markov condition forG.
�

It is trivial to construct examples where the causal Markov
condition is violated if the programsnj are mutually depen-
dent (for instance, the trivial graph with two nodesx1, x2 and
no edge would satisfyI(x1 : x2) > 0 if the programsn1, n2

computingx1, x2 from an empty input are dependent).
The model given by equation (21) can also be interpreted

as follows. Eachnj is the description of the mechanism that
generatesxj from its parents. This perspective makes apparent
that themechanismsthat generate causal relations are assumed
to be independent. This is essential for the general philosophy
of this paper. To see that such a mutual independence of
mechanisms is a reasonable assumption we recall that the
causal graph is meant to formalizeall relevant causal links
between the objects. If we observe, for instance, that two nodes
are generated from their parents by the same complex rule we
postulate another causal link between the nodes that explains
the similarity of mechanisms.

C. Relation between the postulates

In our presentation the algorithmic Markov condition plays
the role of the fundamental postulate. It provides the basisfor
all causal conclusions that we discuss later. The algorithmic
model of causality has only been described to provide an
additional justification for the former. Rather than postulating
the (algorithmic) causal Markov condition one could also
develop the theory as follows. One states the Causal Principle
in Lemma 5 aspostulateand additionally postulates that every
causal mechanism is Turing computable in the sense that every
effect is computed from its causespaj by some programnj .
Recall that the stringsnj then describe the causal mechanisms
– if these mechanisms have been designed independently, the
joint independence ofn1, . . . , nn then follows from the Causal
Principle.

All these postulates referring to algorithmic information
imply, in an appropriate limit, the corresponding postulates for
statistical causal inference: Assume that all stringsxj andnj

represent lists ofXj or Nj values, respectively, after repeated
i.i.d. sampling. Assume, moreover, that the Kolmogorov com-
plexity of the joint distribution ofX1, . . . , Xn, N1, . . . , Nn is
negligible. Then the algorithmic mutual information reduces
to the statistical mutual information (consider conditional
versions of Theorems 1 and 2) and the statistical versions of
the postulates are implied by the algorithmic ones .

In particular, the algorithmic Markov condition then reduces
to the statistical causal Markov condition. However, the former
is more fundamental than the latter since it is also applicable
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to the case where the i.i.d. assumption is violated or the
complexity of the distribution becomes significant.

D. Relative causality

This subsection explains why it is sensible to define al-
gorithmic dependence and the existence or non-existence of
causal linksrelative to some background information. To this
end, we consider genetic sequencess1, s2 of two persons that
are not relatives. We certainly find high similarity that leads
to a significant violation ofI(s1 : s2) = 0 due to the fact
that both genes are taken from humans. However, given the
background information “s1 is a human genetic sequence”,s1

can be further compressed. The same applies tos2. Let h be a
code that is particularly adapted to the human genome in the
sense that it minimizes the expected complexity of a randomly
chosen human genome, i.e.,h minimizes

1

N

∑

s

K(s|h) ,

wheres runs over the genomes of all humans andN is the
total size of the human population. Then it would make sense
to considerI(s1 : s2|h) > 0 as a hint for a relation that
goes beyond the fact that both persons are human. In contrast,
for the unconditional mutual information we expectI(s1 :
s2) ≥ K(h). We will therefore infer some causal relation
(here: common ancestors in the evolution) using the Causal
Principle in Lemma 5 (cf. [29]).

The common properties between different and unrelated
individuals of the same species can be screened off by pro-
viding the relevant background information. Given this causal
background, we can detect further similarities in the genes
by the conditional algorithmic mutual information and take
them as an indicator for an additional causal relation that
goes beyond the common evolutionary background. For this
reason, every discussion on whether there exists a causal link
between two objects (or individuals) requires a specification
of the background information. In this sense, causality is a
relative concept.

One may ask whether such a relativity of causality is also
true for the statistical version of the causality principle, i.e.,
Reichenbach’s principle of the common cause. In the statis-
tical version of the link between causality and dependence,
the relevance of the background information is less obvious
because it is evident that statistical methods are always applied
to a given statistical sample. If we, for instance, ask whether
there is a causal relation between the height and the income
of a person without specifying whether we refer to people of
a certain age, we observe the same relativity with respect to
additionally specifying the “background information”, which
is here given by referring to a specific sample.

In the following sections we will assume that the relevant
background information has been specified and it has been
clarified how to translate the relevant aspects of a real object
into a binary string such that we can identify every object with
its binary description.

III. N OVEL STATISTICAL INFERENCE RULES FROM THE

ALGORITHMIC MARKOV CONDITION

A. Algorithmic independence of Markov kernels

To describe the implications of the algorithmic Markov
condition for statistical causal inference, we consider random
variablesX and Y whereX causally influencesY . We can
think of P (X) as describing a sourceS that generatesx-values
and sends them to a “machine”M that generatesy-values
according toP (Y |X). Assume we observe that

I(P (X) : P (Y |X))≫ 0 .

Then we conclude that there must be a causal link betweenS
andM that goes beyond transferringx-values fromS to M .
This is becauseP (X) andP (Y |X) are inherent properties of
S and M , respectively, which do not depend on the current
value of x that has been sent. Hence there must be a causal
link that explains the similarities in thedesignof S and M .
Here we have assumed that we know thatX → Y is the
correct causal structure on thestatistical level. Then we have
to accept that a further causal link on the higher level of the
machine designis present.

If the causal structure on the statistical level is unknown,we
would prefer causal hypotheses that explain the data without
needing a causal connection on the higher level provided
that the hypotheses are consistent with the statistical Markov
condition. Given this principle, we thus prefer causal graphsG
for which the Markov kernelsP (Xj |PAj) become algorithmi-
cally independent. This is equivalent to saying that the shortest
description ofP (X1, . . . , Xn) is given by concatenating the
descriptions of the Markov kernels, a postulate that has already
been formulated by Lemeire and Dirkx [37] (see also [38]) in
a similar form:

Postulate: algorithmic independence of conditionals
A causal hypothesisG (i.e., a DAG) is only acceptable if
the shortest description of the joint densityP is given by
a concatenation of the shortest description of the Markov
kernels, i.e.

K(P (X1, . . . , Xn))
+
=

∑

j

K(P (Xj |PAj)) . (26)

If no such causal graph exists, we reject every possible DAG
and assume that there is a causal relation of a different type,
e.g., a latent common cause, selection bias, or a cyclic causal
structure.

Here we have implicitly assumed thatP (X1, . . . , Xn) is
computable is the sense that it as has computable function
P (x1, . . . , xn) as density. We will keep this assumption unless
it is explicitly stated. The sum on the right hand side of eq. (26)
will be called thetotal complexityof the causal modelG. Note
that the postulate of algorithmic independence of conditionals
implies that we have to reject every causal hypothesis for
which the total complexity is not minimal because a model
with shorter total complexity already provides a shorter de-
scription of the joint distribution. Inferring causal directions
by minimizing this expression (or actually a computable
modification) could also be interpreted in a Bayesian way if we
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considerK(P (Xj|PAj)) as the negative log likelihood for the
prior probability for having the conditionalP (Xj|PAj) (after
appropriate normalization). However, postulating eq. (26) has
implications that go beyond known Bayesian approaches to
causal discovery because one can get hints on the incomplete-
ness of the class of models under consideration (in addition
to providing rules for giving preferencewithin the class).
If eq. (26) is violated for all DAGs, none of them can be
accepted. One possible explanation is that the set of variables
is not causally sufficient because there is a latent common
cause.

Lemeire and Dirkx [37] already sketched a relation between
causal faithfulness and postulating (26) saying basicallythat,
under appropriate conditions, the algorithmic independence of
conditionals implies the causal faithfulness principle. Even
though a detailed specification of the conditions has been left
to future work, the idea is as follows: Unless the conditionals
are very specific (e.g., deterministic relations between causes
and effects), violations of faithfulness require mutual adjust-
ments of conditionals in the sense that they jointly satisfy
equations that would not hold for generic choices. Therefore,
they are algorithmically dependent. Now we want to show that
(26) implies causal inference rules that go beyond the known
ones.

To this end, we focus again on the example in Subsec-
tion I-B with a binary variableX and a continuous vari-
able Y . The hypothesisX → Y is not rejected because
I(P (X) : P (Y |X))

+
= 0. For the equally weighted mixture of

two Gaussians this already follows8 from K(P (X))
+
= 0. On

the other hand,Y → X violates (26). Elementary calculations
show that the conditionalP (X |Y ) is given by the sigmoid
function

P (X = 1|y) =
1

2

(
1 + tanh

λ(y − µ)

σ2

)
. (27)

We observe that the same parametersσ, λ, µ that occur in
P (Y ) (see eq. (4), also occur inP (X |Y ) and bothP (Y )
and P (X |Y ) are complex, see eq. (27). This already shows
that the two Markov kernels are algorithmically dependent.To
be more explicit, we observe thatµ, λ, andσ are required to
specify P (Y ). To describeP (X |Y ), we needλ/σ2 and µ.
Hence we have

K(P (Y ))
+
= K(µ, λ, σ)
+
= K(µ) + K(λ) + K(σ)

K(P (X |Y ))
+
= K(µ, λ/σ2)
+
= K(µ) + K(λ/σ2)

K(P (X, Y ))
+
= K(P (Y ), P (X |Y ))

+
= K(µ, λ, σ)

+
= K(µ) + K(λ) + K(σ) ,

where we have assumed that the stringsµ, λ, σ are jointly
independent. Note that the information thatP (Y ) is a mixture
of two Gaussians and thatP (X |Y ) is a sigmoid counts as a

8for the more general caseP (X = 1) = p with K(p) ≫ 0, this also
follows if we assume thatp is algorithmically independent of the parameters
that specifyP (Y |X).

constant because its description complexity does not depend
on the parameters.

We thus get

I(P (Y ) : P (X |Y ))
+
= K(µ) + K(λ/σ2) .

Therefore we reject the causal hypothesisY → X because
eq. (26) is violated. The interesting point is that we need not
look at the alternative hypothesisX → Y . In other words,
we do not rejectY → X only because the converse direction
leads to simpler expressions. We can reject it alone on the
basis of observing algorithmic dependences betweenP (Y )
andP (X |Y ) making the causal model suspicious.

The following thought experiment shows thatY → X
would become plausible if we “detune” the sigmoidP (X |Y )
by changing slope or offset, i.e., choosingλ̃, µ̃, σ̃ indepen-
dently of λ and µ, andσ. ThenP (Y ) and P (X |Y ) are by
definition algorithmically independent and therefore we obtain
a more complex joint distribution:

K(P (X, Y )) = K(λ)+K(µ)+K(σ)+K(λ̃/σ̃2)+K(µ̃/σ̃2) .

The fact that the set of mixtures of two Gaussians does not
have five free parameters already shows thatP (X, Y ) must be
a more complex distribution than the one above. Fig. 4 shows
an example of a joint distribution obtained for the “detuned”
situation.

As already noted by [37], the independence of mechanisms
is related to Pearl’s thoughts on the stability of causal state-
ments: the causal mechanismP (Xj |PAj) does not change
if one changes the input distributionP (PAj) by influencing
the variablesPAj . The same conditional can therefore occur,
under different background conditions, with different input
distributions.

An equivalent of eq. (26) naturally occurs in the probability-
free version of the causal Markov condition. To explain
this, assume we are given two stringsx and y of length
n (describing two real-world observations) and notice that
x = y. Now we consider two alternative scenarios:

(I) Assume that every pair(xj , yj) of digits (j = 1, . . . , n)
has been independently drawn from the same joint distribution
P (X, Y ) of the binary random variablesX andY . Hence,X
andY both take values in{0, 1}
(II) Let x andy be single instances of string-valued random
variablesX andY , i.e., bothX andY take values in{0, 1}n.

The difference between (I) and (II) is crucial for statis-
tical causal inference: In case (I), statistical independence
is rejected with high confidence proving the existence of a
causal link. In contrast, there is no evidence for statistical
dependence in case (II) since the underlying joint distribution
on {0, 1}n×{0, 1}n could, for instance, be the point mass on
the pair(x,y), which is a product distribution, i.e.,

P (X, Y ) = P (Y )P (X) .

Hence, statistical causal inference would not infer a causal
connection in case (II).

Algorithmic causal inference, on the other hand, infers a
causal link in both cases because the equalityx = y requires
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Fig. 4. Left: a source generates the bimodal distributionP (Y ). A machine generatesx-values according to a conditionalP (X|Y ) given
by the sigmoid (27). If the slope and the position parametersof the sigmoid are not correctly adjusted to the distance, the position, and the
width of the two Gaussian modes, the generated joint distribution no longer consists of two Gaussians (right).

an explanation. The relevance of switching between (I) and
(II) then consists merely in shifting the causal connectionto
another level: In the i.i.d setting, everyxj must be causally
linked to yj . In case (II), there must be a connection between
the two mechanismsthat have generated the entire strings
becauseI(P (X) : P (Y |X)) = I(P (X) : P (Y )) ≫ 0. This
can, for instance, be due to the fact that two machines emitting
the same string were designed by the same engineer. A detailed
discussion of the relevance of translating the i.i.d. assumption
into the setting of algorithmic causal inference will be given
in Subsection III-B.

Examples with large probability spaces

In the preceding subsection we have ignored a serious
problem with defining the Kolmogorov complexity of (con-
ditional) probability distributions that even occurs in finite
probability spaces. First of all the “true” probabilities may
not be computable. For instance, a coin may produce “head”
with probability p where p is someuncomputablenumber,
i.e., K(p) = ∞. And even if it were some computable value
p with largeK(p) it is not clear whether one should call the
probability distribution(p, 1 − p) “complex” becauseK(p)
is high and “simple” if we have, for instancep = 1/π. A
more reasonable notion of complexity can be obtained by
describing the probabilities only up to a certain accuracyǫ.
If ǫ is not too small we obtain small complexity values for the
distribution of a binary variable, and also low complexity for
a distribution on a larger set that isǫ-close to the values of
some simple analytical expression like a Gaussian distribution.
There will still remain some unease about the concept of
Kolmogorov complexity of “the true distribution”. We will
subsequently develop a formalism that avoids this concept.
However, Kolmogorov complexity of distributions is a useful
idea to start with since it provides an intuitive understanding
of the roots of the asymmetries between cause and effects that
we will describe in Subsection III-B.

Below, we will describe a thought experiment with two
random variablesX, Y linked by the causal structureX → Y
where the total complexities of the causal modelsX → Y
and Y → X both are well-defined and, in the generic case,
different. First we will show that they can at most differ by a

factor two.
Lemma 9 (maximal complexity quotient):

For every joint distributionP (X, Y ) we have

K(P (Y )) + K(P (X |Y ))
+
≤ 2

(
K(P (X)) + K(P (Y |X))

)
.

Proof: Since marginals and conditionals both can be computed
from P (X, Y ) we have

K(P (Y )) + K(P (X |Y ))
+
≤ 2K(P (X, Y )) .

Then the statement follows becauseP (X, Y ) can be computed
from P (X) andP (Y |X). �

To construct examples where the bound in Lemma 9 is attained
we first introduce a method to construct conditionals with well-
defined complexity:

Definition 6 (Conditionals and joint distributions from strings):

Let M0, M1 be two stochastic matrices that specify transition
probabilities from{0, 1} to {0, 1}. Then

Mc := Mc1 ⊗Mc2 ⊗ · · · ⊗Mcn

defines transition probabilities from{0, 1}n to {0, 1}n.
We also introduce the same construction for double indices:

Let M00, M01, M10, M11 be stochastic matrices describing
transition probabilities from{0, 1} to {0, 1}. Let c, d ∈ {0, 1}n
be two strings. Then

Mc,d := Mc1,d1 ⊗Mc2,d2 ⊗ · · · ⊗Mcn,dn

defines a transition matrix from{0, 1}n to {0, 1}n. If the
matricesMj or Mij denote joint distributions on{0, 1} ×
{0, 1} the objectsMc andMc,d define joint distributions on
{0, 1}n × {0, 1}n in a canonical way.

Let X, Y be variables whose values are binary strings of
length n. To define P (X, Y ) we first define distributions
P0(U), P1(U) of a binary random variableU . Moreover,
we introduce stochastic matricesA0, A1 describing transition
probabilitiesP0(V |U) and P1(V |U), respectively, whereV
is also binary. Then a stringc ∈ {0, 1}n determines, together
with P0 andP1 given above, a distributionP (X) := Pc (using
Definition 5) that has well-defined Kolmogorov complexity
K(c) if the description complexity ofP0 andP1 is neglected.
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Furthermore, for an arbitrary random stringd ∈ {0, 1}n, we
set P (Y |X) := Ad as in Definition 6, where we have used
the canonical identification between stochastic matrices and
conditional probabilities. The joint distributionP (X, Y ) is
then determined byc andd.

To investigate the description length ofP (Y ) andP (X |Y )
we introduce the following notions. LetRij be short hand for
the joint distribution ofU, V defined by

Pij(U, V ) := Pi(U)Pj(V |U) .

Let Qij denote the corresponding marginal distribution ofV
andBij short hand for the conditional

Pij(U |V ) =
Pij(U, V )

Pij(V )
.

Using these notations and the ones in Definition 6, we obtain

P (X) = Pc (28)

P (Y |X) = Ad

P (X, Y ) = Rc,d

P (Y ) = Qc,d

P (X |Y ) = Bc,d

It is noteworthy thatP (Y ) and P (X |Y ) are labeled by
both strings whileP (X) andP (Y |X) are described by only
one string each. This already suggests that the latter are more
complex in the generic case.

Now we compare the sumK(P (X)) + K(P (Y |X)) to
K(P (Y )) + K(P (X |Y )) for the caseK(c)

+
= K(d)

+
= n and

I(c : d)
+
= 0. We assume thatPi andAj are computable and

their complexity is counted asO(1) because it does not depend
onn. Nevertheless, we assume thatPi andAj are “generic” in
the following sense: All marginalsQij and conditionalsBij

are different wheneverP0 6= P1 andA0 6= A1. If we impose
one of the conditionsP0 = P1 and A0 = A1 or both, we
assume that only those marginalsQij and conditionalsBij

coincide for which the equality follows from the conditions
imposed. Consider the following cases:

Case 1:P0 = P1, A0 = A1. Then all the complexities vanish
because the joint distribution does not depend on the strings
c andd.

Case 2:P0 6= P1, A0 = A1. Then the digits ofc are relevant,
but the digits ofd are not. Those marginals and conditionals
in table (28) that formally depend onc andd, as well as those
that depend onc, have complexityn. Those depending ond
have complexity0.

K(P (X)) + K(P (Y |X))
+
= n + 0 = n

K(P (Y )) + K(P (X |Y ))
+
= n + n = 2n .

Case 3: P0 = P1, A0 6= A1. Only the dependence ond
contributes to the complexity. This implies

K(P (X)) + K(P (Y |X))
+
= 0 + n = n

K(P (Y )) + K(P (X |Y ))
+
= n + n = 2n .

Case 4:P0 6= P1 andA0 6= A1. Every formal dependence of
the conditionals and marginals onc and d in table (28) is a
proper dependence. Hence we obtain

K(P (X)) + K(P (Y |X))
+
= n + n = 2n

K(P (Y )) + K(P (X |Y ))
+
= 2n + 2n = 4n .

The general principle of the above example is very simple.
Given thatP (X) is taken from a model class that consists of
N different elements andP (Y |X) is taken from a class with
M different elements. Then the class of possibleP (Y ) and the
class of possibleP (X |Y ) both can containN ·M elements.
If the simplicity of a model is quantified in terms of the size
of the class it is taken from (within a hierarchy of more and
more complex models), the statement thatP (Y ) andP (X |Y )
are typically complex is just based on this simple counting
argument.

Detecting common causes via dependent Markov kernels

The following model shows that latent common causes
can yield joint distributions whose Kolmogorov complexity
is smaller thanK(P (X)) + K(P (Y |X)) and K(P (Y )) +
K(X |Y )). Let X, Y, Z have values in{0, 1}n and letP (Z) :=
δc be the point mass on some random stringc ∈ {0, 1}n. Let
P (X |Z) andP (Y |Z) both be given by the stochastic matrix
A⊗A⊗· · ·⊗A. Let P0 6= P1 be the probability vectors given
by the columns ofA. Then

P (X) = P (Y ) = Pc ,

with Pc as in Definition 5. SinceP (Z) is supported by the sin-
gleton set{c}, the hidden common causeZ does not generate
any statistical dependence and we obtainP (X |Y ) = P (X)
andP (Y |X) = P (Y ). Thus

K(P (X)) + K(P (Y |X))
+
= K(P (X |Y )) + K(P (Y ))
+
= K(P (X)) + K(P (Y ))

+
= 2n .

On the other hand, we have

K(P (X |Z)) + K(P (Y |Z)) + K(P (Z))
+
= 0 + 0 + n = n .

By observing that there is a third variableZ such that

K(P (X |Z)) + K(P (Y |Z)) + K(P (Z))
+
= K(P (X, Y )) ,

we thus have obtained a hint that the latent model is the more
appropriate causal hypothesis.

Note that this is an example where bothX → Y andY →
X can be rejected without checking the alternative hypothesis.
Given that we have observed

I(P (X) : P (X |Y ))≫ 0 and I(P (Y ) : P (X |Y ))≫ 0

we know that both DAGs are wrong even though we may not
have observed that the causal structure

X ← Z → Y

does satisfy the independence condition.
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Analysis of the required sample size

The following arguments show that the above algorithmic
dependences between the Markov kernels corresponding to the
wrong causal hypotheses can already be observed for moderate
sample size. Readers who are not interested in technical details
may skip the remaining part of the subsection.

Consider first the sampling required to estimatec by draw-
ing i.i.d. from Pc as in Definition 5. By counting the number
of symbols1 that occur at positionj we can guess whether
cj is 0 or 1 by choosing the distribution for which the relative
frequency is closer to the corresponding probability. To bound
the error probabilities from above set

µ := |P0(1)− P1(1)| .

Then the probabilityq that the relative frequency deviates by
more thanµ/2 decreases exponentially in the numberm of
copies, i.e.,q ≤ e−µmα whereα is an appropriate constant.
The probability to have no error for any digit is then bounded
from below by(1 − e−µmα)n. We want to increasem such
that the error probability tends to zero. To this end, choosem
such thate−µmα ≤ 1/n2, i.e., m ≥ lnn2/(µα). Hence

(
1− e−µmα

)n

≥
(
1− 1

n2

)n

→ 1 .

Given the information that the probability distributionP (X)
factorizes with respect to the digits, the sample size required
to estimate it (and determine the stringd) thus grows only
logarithmically inn.

In the same way, one shows that the sample size needed
to distinguish between different conditionalsP (Y |X) = Ad

increases only with the logarithm ofn provided thatP (X) is
a strictly positive product distribution on{0, 1}n. This shows
that the high description complexity of a distribution can get
relevant even for moderate sample size.

B. Resolving statistical samples into individual observations

The assumption of independent identically distributed ran-
dom variables is one of the cornerstones of standard statistical
reasoning. In this section we show that theindependence
assumption in a typical statistical sample is often due to prior
knowledge on causal relations among single objects which
can nicely be represented by a DAG. We will see that the
algorithmic causal Markov condition then leads to non-trivial
implications.

Assume we describe a biased coin toss,m times repeated,
and obtain the binary stringx1, . . . , xm as result. This is
certainly one of the scenarios where the i.i.d. assumption is
well justified because we do not believe that the coin changes
or that the result of one coin toss influences the other ones.
The only relation between the coin tosses is that they refer
to the same coin. We will thus draw a DAG representing the
relevant causal relations for the scenario whereC (the coin)
is the common cause of allxj (see fig. 5).

Given the relevant information onC (i.e., given the proba-
bility p for “head”), we have conditional algorithmic indepen-
dence between thexj when applying the Markov condition

Fig. 5. Causal structure of the coin toss. The statistical properties
of the coinC define the common cause that links the results of the
coin toss.

to this causal graph.9 However, there are two problems:
(1) it does not make sense to consider algorithmic mutual
information among binary strings of length1. (2) Our theory
developed so far (Theorems 3 and 4) considered the number
of strings (which ism + 1 here) as constant and thus even
the complexity ofx1, . . . , xm is considered asO(1). To solve
this problem, we define a new structure with three nodes as
follows. For some arbitraryk < m set x1 := x1, . . . , xk

and x2 := xk+1, . . . , xm. Then C is the common cause of
x1 and x2 and I(x1;x2|C) = 0 because every similarity
betweenx1 andx2 is due to their common source (note that
the information that the stringsxj have been obtained by
combiningk andn− k results, respectively, is here implicitly
considered as background information in the sense of relative
causality in Subsection II-D). We will later discuss examples
where a source generates symbols from a larger probability
space. Then everyxj is a string and it is important to keep
in mind the sample size such that the string defined by the
concatenation ofx1, x2, · · · , xm cen be decomposed into the
original sequence ofm stringsxj again. This information will
always be considered as background, too.

Of course, we may also consider partitions into more than
two substrings keeping in mind that their number is considered
as O(1). When we consider causal relations betweenshort
strings we will thus always apply the algorithmic causal
Markov condition to groups of strings rather than applying
it to the “small objects” itself. The DAG that formalizes the
causal relations between instances or groups of instances of a
statistical sample and the source that determines the statistics
in the above sense will be called the “resolution of statistical
samples into individual observations”.

The resolution gets more interesting if we consider causal
relations between two random variablesX and Y . Consider
the following scenario whereX is the cause ofY . Let S
be a source generatingx-valuesx1, . . . , xm according to a
fixed probability distributionP (X). Let M be a machine

9This is consistent with the following Bayesian interpretation: if we define
a non-trivial prior on the possible values ofp, the individual observations
are statistically dependent when marginalizing over the prior, but knowingp
renders them independent.
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Fig. 6. Left: causal structure obtained by resolving the causal
structureX → Y between the random variablesX and Y into
causal relations among single events. Right: causal graph obtained
by combining the firstk observations tox1 and the remainingm−k
to x

2 and the same forY . We observe thatx2 d-separatesx1

and y
2, while y

2 does not d-separatey1 and x
2. This asymmetry

distinguishes causes from effects.

that receives these values as inputs and generatesy-values
y1, . . . , ym according to the conditionalP (Y |X). Fig 6 (left)
shows the causal graph form = 4.

In analogy to the procedure above, we divide the stringx :=
x1, . . . , xm into x1 := x1, . . . , xk and x2 := xk+1, . . . , xm

and use the same grouping for they-values. We then draw
the causal graph in fig. 6 (right) showing causal relations
betweenx1,x2,y1,y2, S, M . Now we assume thatP (X) and
P (Y |X) are not known, i.e., we don’t have access to the
relevant properties ofS andM . Thus we have to considerS
and M as “hidden objects” (in analogy to hidden variables
in the statistical setting). Therefore we have to apply the
Markov condition to the causal structure in such a way that
only the observed objectsx1,x2,y1,y2 occur. One checks
easily thatx2 d-separatesx1 and y2 and x1 d-separatesx2

andy1. Exhaustive search over all possible triples of subsets
of x1,x2,y1,y2 shows that these are the only non-trivial d-
separation conditions. We conclude

I(x1;y2|(x2)∗)
+
= 0 and I(x2;y1|(x1)∗)

+
= 0 . (29)

The most remarkable property of eq. (29) is that it is asymmet-
ric with respect to exchanging the roles ofX andY since, for
instance,I(y1;x2|(y2)∗)

+
= 0 can be violated. Intuitively, the

reason is that giveny2, the knowledge ofx2 provides better
insights into the properties ofS and M than knowledge of
x1 would do, which can be an advantage when describingy1.
The following example shows that this asymmetry can even be
relevant for sample sizem = 2 provided that the probability
space is large.

Let S be a source that always generates the same string
a ∈ {0, 1}n. Assume furthermore thata is algorithmically
random in the sense thatK(a)

+
= n. For sample sizem = 2

we then havex = (x1, x2) = (a, a). Let M be a machine that
randomly removesℓ digits either at the beginning or the end
from its input string of lengthn. By this procedure we obtain
a stringyj ∈ {0, 1}ñ with ñ := n− ℓ from xj .

Fig. 7. Visualization of the truncation process: The sourceS
generates always the same string, the machine truncates either the
left or the right end. Given only the four stringsx1, x2 andy1, y2 as
observations, we can reject the causal hypothesisY → X. This is
becauseI(x1 : y2|y

∗

1) can be significantly greater than zero provided
that the substrings missing iny1, y2 at the left or at the right end,
respectively, are sufficiently complex.

For sample size2 it is likely that y1 and y2 contain the
last n− ℓ and the firstn− ℓ digits of a, respectively, or vice
versa. This process is depicted in fig. 7 forn = 8 and ℓ = 2.
Since the sample size is only two, the partition of the sample
into two halves leads to single observations, i.e.,xj = xj and
yj = yj for j = 1, 2.

In short-hand notation,y1 = a[1..n−ℓ] and y2 = a[ℓ+1..n].
We then have

I(x1;y2|(x2)∗)
+
= 0 and I(y1;x2|(x1)∗)

+
= 0 ,

but

I(y1 : x2|(y2)∗)
+
= ℓ and I(x1 : y2|(y1)∗)

+
= ℓ ,

which correctly lets us prefer the causal directionX → Y .
This is because these dependences violate the global algo-
rithmic Markov condition in Theorem 3 when applied to a
hypothetical graph wherey1 and y2 are the outputs of the
source andx1 andx2 are the outputs of a machine that has
receivedy1 andy2.

Even though the condition in eq. (29) does not explicitly
contain the notion of complexities of Markov kernels it is
closely related to the algorithmic independence of Markov ker-
nels. To explain this, assume we would generate algorithmic
dependences betweenS andM by adding an arrowS →M
or S ← M or by adding a common cause. Thenx2 would
no longer d-separatex1 from y2. The possible violation of
eq. (29) could then be an observable result of the algorithmic
dependences between the hidden objectsS andM (and their
statistical propertiesP (X) andP (Y |X), respectively).

C. Conditional density estimation on subsamples

Now we develop an inference rule that is even closer to the
idea of checking algorithmic dependences of Markov kernels
than condition (29), but still avoids the notion ofKolmogorov
complexity of the “true” conditional distributionsby using
finite sample estimates instead. Before we explain the idea
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we mention two simpler approaches for doing so and describe
their potential problems. It would be straightforward to check
(26) for the finite sample estimates of the conditionals. In
particular, minimum description length (MDL) approaches
[39] appear promising from the theoretical point of view due
to their close relation to Kolmogorov complexity. We rephrase
the minimum complexity estimator described by Barron and
Cover [40]: Given a string-valued random variableX and a
samplex1, . . . , xm drawn i.i.d. fromP (X), set

P̂m := argminQ

{
K(Q)−

m∑

j=1

log Q(xj)
}

, (30)

where Q runs over all computable probability densities on
the probability space under consideration. If the data is sam-
pled from a computable distribution, then̂Pm(X) converges
almost surely toP (X) [40]. Let us define a similar estimator
P̂m(Y |X) for the conditional densityP (Y |X). Could we
reject the causal hypothesisX → Y after observing that
P̂m(X) andP̂m(Y |X) are mutually dependent? In the context
of the true probabilities, we have argued thatP (X) and
P (Y |X) represent independent mechanisms. However, for the
estimators we do not see a justification for independence
because the relative frequencies of thex-values influence the
estimation ofP̂m(X) andP̂m(Y |X). Moreoever, the empirical
frequenciesp̂(x) and p̂(y|x) are related by the fact that for
any fixedx, p̂(x) and all p̂(y|x) are divisible by the number
of occurrences ofx. Whether similar dependences also hold
for the MDL-estimators is unclear.

This problem, however, becomes certainly irrelevant if the
sample size is such that the complexities of the estimators
coincide with the complexities of the true distributions, but if
we assume that the latter are typically uncomputable (because
generic real numbers are uncomputable) this sample size will
never be attained.

The general idea of MDL [39] also suggests the following
causal inference principle: Assume we are given the data
points(xj , yj) with j = 1, . . . , m and consider the MDL esti-
matorsP̂m(X) andP̂m(Y |X). They define a joint distribution
that we denote bŷPX→Y (X, Y ) (where we have droppedm
for convenience). The total description length

CX→Y := K(P̂m(X)) + K(P̂m(Y |X)) (31)

−
m∑

j=1

log P̂X→Y (xj , yj)

measures the complexity of the probabilistic model plus the
complexity of the data, given the model.

The following remarks may provide a better intuition about
the expression (31). In “classical MDL”, the complexity of an
element in a continuously parameterized family of distribu-
tions withd parameters is measured as(d/2) logm+O(1) bits.
The first two terms in eq. (31) correspond to the right hand side
of eq. (26) and the last term to the logarithm of eq. (2). Then
we compareCX→Y to CY →X (defined correspondingly) and
prefer the causal direction with the smaller value. If the opti-
mization in eq. (30) and the corresponding one for conditionals
is restricted to a set of marginals and conditionals with zero
complexity, the method thus reduces to a maximum likelihood

fit. On the other hand, if the estimatorŝP (Y |X)P̂ (X) and
P̂ (X |Y )P̂ (Y ) coincide, the method reduces to choosing the
direction with smaller algorithmic dependences of condition-
als, i.e., the direction that is closer to satisfying (26).

It would be interesting to know whether MDL-based causal
inference could also be derived from the algorithmic Markov
condition. An interesting conceptual difference between the
algorithmic Markov condition and MDL is that the former is
in principle able to reject all causal DAGs if all of them violate
the algorithmic independence of conditionals.

For this paper, we want to infer causal directions only on
the basis of the algorithmic Markov condition and constructan
inference rule that uses estimators in a more sophisticatedway.
Its justification is directly based on applying the algorithmic
Markov condition to the resolution of samples as introduced
in Subsection III-B. The idea of our strategy is that we do not
use the full data set to estimateP (Y |X). Instead, we apply
the estimator to a subsample of(x, y) pairs that no longer
carries significant information about the relative frequencies
of x-values in the full data set. As we will see below, this
leads to algorithmically independentfinite sampleestimators
for the Markov kernels if the causal hypothesis is correct.

Let X → Y be the causal structure that generated the data
(x,y), with x := x1, . . . , xm and y := y1, . . . , ym after
m-fold i.i.d. sampling fromP (X, Y ). The resolution of the
sample is the causal graph in fig. 8, left.

According to the model in eq. (21), there are mutually
independent programspj computingxj from the description
of S. Likewise, there are mutually independent programsqj

computingyj from M andxj . Assume we are given a rule how
to generate a subsample ofx1, . . . , xm from x. It is important
that this selection rule does not refer toy but only usesx
(as well as some random string as additional input) and that
the selection can be performed by a program of lengthO(1).
Denote the subsample by

x̃ = x̃1, . . . , x̃l := xj1 , . . . , xjl
,

with l < m. The above selection of indices defines also a
subsample ofy-values

y := yj1 , . . . , yjl
:= ỹ1, . . . , ỹl .

By construction, we have

ỹi = qji
(x̃i, M) .

Hence we can draw the causal structure depicted in fig. 8,
right.

Let now DX be any string that is derived fromx by some
program of lengthO(1). DX may be the full description
of relative frequencies or anycomputabledensity estimator
P̂ (X), or some other description of interesting properties of
the relative frequencies. Similarly, let̃DY X be a description
that is derived fromx,y by some simple algorithmic rule.
The idea is that it is a computable estimatorP̃ (Y |X) for the
conditional distributionP (Y |X) or any relevant property of
the latter. Instead of estimating conditionals, one may also
consider an estimator of thejoint density of the subsample.
We augment the causal structure in fig. 8, right, withDX and
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Fig. 8. (left) Causal structure between single observationsx1, . . . , xm,y1, . . . , ym for sampling fromP (X, Y ), given the causal structure
X → Y . The programspj computexj from the description of the sourceS. The programsqj computeyj from xj and the description of
the machineM , respectively. The grey nodes are those that are selected for the subsample (see text). Right: Causal structure relating x, x̃j ,
and ỹj . Note that the causal relation betweenx̃j and ỹj is the same as the one between the corresponding pairxj andyj . Here, for instance,
x̃3 = x4 and ỹ3 = y4 and it is thus still the same programq4 that computesy4 from x4 andM . Hence, the causal model that linksM with
the selected values̃xj and ỹj is the subgraph of the graph showing relations betweenxj , yj andM . This kind of robustness of the causal
structure with respect to the selection procedure will be used below.

D̃Y X . The structure can be simplified by merging nodes in
the same level and we obtain the structure in fig. 9.

To derive testable implications of the causal hypothesis,
we observe that every information betweenDX and D̃Y X

is processed viãx. We thus have

D̃Y X ⊥⊥ DX |x̃∗ , (32)

which formally follows from the global Markov condition in
Theorem 3. Using Lemma 8 and eq. (32) we conclude

I(DX : D̃Y X)
+
≤ I(x̃ : DX) . (33)

The intention behind generating the subsamplex̃ is to “blur”
the distribution ofX in the sense that the subsample does
not contain any noteworthy amount of algorithmic information
on P (X). If we have a density estimator̂P (X) we try
to choose the subsample such that the algorithmic mutual
information betweeñx and P̂ (X) is small. Otherwise we
have not sufficiently blurred the distribution ofX . Then we
apply an arbitrary conditional density estimatorP̂ (Y |X) to the
subsample. If there still is a non-negligible amount of mutual
information between̂PX and P̂ (Y |X), the causal hypothesis
in fig. 6, left, cannot be true and we rejectX → Y .

To show that the above procedure can also be applied
to data sampled fromuncomputableprobability distributions,
let P0 and P1 be uncomputable distributions on{0, 1} and
A0, A1 uncomputable stochastic maps from{0, 1} to {0, 1}.
Define a string-valued random variableX with distribution
P (X) := Pc as in Definition 5 and the conditional distribution
of a string-valued variableY by P (Y |X) := Ad as in
Definition 6 for stringsc, d ∈ {0, 1}n. Let P0 andP1 as well
asA0 andA1 be known up to an accuracy that is sufficient to
distinguish between them. We assume that all this information
(includingn) is given as background knowledge, butc andd
are unknown. LetDX =: ĉ, where ĉ is the estimated value
of c computed from the finite samplex of sizem. Likewise,
let D̃XY := d̂ be the estimated value ofd derived from the
subsample(x̃, ỹ) of size m̃. If m is large enough (such that
alsom̃ is sufficiently large) we can estimatec andd, i.e, ĉ = c
and d̂ = d with high probability. The most radical method to
ensure that̃x shares little information withx andP (X) is the
following. Choose somer such that every possiblex-value
occurs at leastr times inx. If x1, . . . , xℓ is the lexicographic
order of theℓ possiblex-values, we define

x̃ := x1 · · ·x1
︸ ︷︷ ︸

r

x2 · · ·x2
︸ ︷︷ ︸

r

· · ·xℓ · · ·xℓ
︸ ︷︷ ︸

r

.
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Fig. 9. DX is some information derived fromx. The idea is that it
is a density estimator forP (X) or that it describes properties of the
empirical distribution ofx-values. If the selection procedurex →
x̃ has sufficiently blurred this information, the mutual information
betweenx̃ and DX is low. DXY on the other hand, is a density
estimator forP (Y |X) or it encodes some desired properties of the
empirical joint distribution ofx- andy-values in the subsample. If the
mutual information betweenDX andD̃Y X exceeds the one between
x̃ andDX , we reject the hypothesisX → Y .

For eachj = 1, . . . , ℓ we randomly assign each copy ofxj

with some indexi for which xi = xj . The stringỹ is then
defined by concatenating the corresponding valuesyi. Given
the set of possiblex-values as background knowledge, the only
algorithmic information that̃x then contains is the description
of r, i.e., log2 r bits. Hence we have

I(DX : x̃)
+
≤ log2 r .

Assume now thatc = d. Then

I(DX : D̃XY )
+
= n ,

provided that the estimation was correct. As shown at the end
of Subsection III-A, this is already possible forr = O(log n),
i.e.,

I(DX : x̃) ∈ O(log2 n) ,

which violates ineq. (33). The importance of this example
lies in the fact thatI(P (X) : P (Y |X)) is not well-defined
here becauseP (X) and P (Y |X) both are uncomputable.
Nevertheless,P (X) andP (Y |X) have a computable aspect,
i.e, the stringsc and d characterizing them. Our strategy is
therefore suitable to detect algorithmic dependences between
computableaspects ofuncomputableprobability distributions.

It is remarkable that the above scheme is general enough
to include also strategies for very small sample sizes provided
that the probability space is large. To describe an extreme case,
we consider again the example with the truncated strings in
fig. 7 with the role ofX andY reversed. LetY be a random

variable whose value is always the constant stringa ∈ {0, 1}n.
Let P (X |Y ) be the mechanism that generatesX by truncating
either thel leftmost digits or thel rightmost digits ofY (each
with probability 1/2). We denote these strings byaleft and
aright, respectively. Assume we have two observationsx1 =
aleft, y1 = c andx2 = aright, y2 = a. We define a subsample
by selecting only the first observatioñx1 := x1 = aleft and
ỹ1 := y1 = a. Then we defineDX := x1, x2 andD̃XY := y1.
We observe that the mutual information betweenD̃XY and
DX is K(a), while the mutual information betweenDX and
x̃ is only K(aleft). Given generic choices ofa, this violates
condition (33) and we reject the causal hypothesisX → Y .

D. Plausible Markov kernels in time series

Time series are interesting examples of causal structures
where the time order provides prior knowledge on the causal
direction. Since there is a large number of them available from
all scientific disciplines they can be useful to test causal infer-
ence rules on data with known ground truth. Let us consider
the following example of a causal inference problem. Given a
time series and the prior knowledge that it has been generated
by a first order Markov process, but the direction is unknown.
Formally, we are given observationsx1, x2, x3, . . . , xm corre-
sponding to random variablesX1, X2, . . . , Xm such that the
causal structure is either

· · · → X1 → X2 → X3 · · · → Xn → · · · , (34)

or
· · · ← X1 ← X2 ← X3 · · · ← Xn ← · · · , (35)

where we have extended the series to infinity in both direc-
tions.

The question is whether our theory also helps to infer the
time direction by using some asymmetry of the joint distri-
bution.10 Let us assume now that the graph (34) corresponds
to the true time direction. Then the hope is thatP (Xj+1|Xj)
is simpler, in some reasonable sense, thanP (Xj|Xj+1). At
first glance this seems to be a straightforward extension of
the principle of plausible Markov kernel discussed in Subsec-
tion III-A. However, there is a subtlety with the justification
when we apply our ideas to stationary time series:

Recall that the principle of minimizing the total complexity
of all Markov kernels over all potential causal directions has
been derived from the independence of the true Markov ker-
nels (remarks after eq. (26)). However, the algorithmic inde-
pendence ofP (Xj |PAj) = P (Xj |Xj−1) andP (Xi|PAi) =
P (Xi|Xi−1) fails spectacularly because stationarity implies
that these Markov kernelscoincide and represent a causal
mechanism that is constant in time. This shows that the
justification of minimizing total complexity breaks down for
stationary time series.

The following argument shows that not only the justification
breaks down but also the principle as such: Consider the

10[41] describes an asymmetry that sometimes helped to identify the
direction in empirical time series. [42] describes a physical toy model that
provides a thermodynamical justification, but the relationof these results to
the algorithmic Markov condition is not obvious.
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case whereP (Xj) is the unique stationary distribution of the
Markov kernelP (Xj+1|Xj). Then we have

K(P (Xj |Xj+1))
+
≤ K(P (Xj+1, Xj))

+
= K(P (Xj+1|Xj)) .

Because the forward time conditional describes uniquely the
backward time conditional (via implying the description of
the unique stationary marginal) the Kolmogorov complexity
of the latter can exceed the complexity of the former only by
a constant term.

We now focus onnon-stationary time series. To motivate
the general idea we first present an example described in [43].
Consider a random walk of a particle onZ starting atz ∈ Z.
In every time step the probability isq to move one site to the
right and(1− q) to move to the left. LetXj with j = 0, 1, . . .
be the random variable describing the position after stepj.
Then we haveP (X0 = z) = 1. The forward time conditional
reads

P (xj+1|xj) =





q for xj+1 = xj + 1
1− q for xj+1 = xj − 1

0 otherwise .

To compute the backward time conditional we first compute
P (Xj) which is given by the distribution of a Bernoulli
experiment withj steps. Letk denote the number of right
moves, i.e.,j − k is the number of left moves. Withxj =
k − (j − k) + z = 2k − j + z we thus obtain

P (xj) = qk(1 − q)j−k

(
j

k

)

= q(j+xj−z)/2(1− q)(j−xj+z)/2

(
j

(j + xj − z)/2

)
.

Elementary calculations show

P (xj |xj+1) = P (xj+1|xj)
P (xj)

P (xj+1)

=





(j+xj−z)/2+1
j+1 for xj = xj+1 − 1

(j−xj+z)/2+1
j+1 for xj = xj=1 + 1

0 otherwise .

The forward time process is specified by the initial con-
dition P (X0) (given by z) and the transition probabilities
P (Xj , . . . , X1|X0) (given byp). A priori, these two “objects”
are mutually unrelated, i.e.,

K(P (X0), P (Xj , Xj−1, . . . , X1|X0))
+
=

K(P (X0)) + K(P (Xj , Xj−1, . . . , X1|X0))
+
=

K(z) + K(q) .

On the other hand, the description ofP (Xj) (the “initial condi-
tion” of the backward time process) alone already requires the
specification ofbothz andq. The description of the “transition
rule” P (X1, . . . , Xj−1|Xj) refers only toz. Assumingz ⊥⊥ q,
we thus have

K(P (Xj))+K(P (X0, X1, . . . , Xj−1|Xj))
+
= 2K(z)+K(q) .

Here, we have setK(j)
+
= 0 because the number of nodes is

always considered constant throughout the paper. Hence

I(P (Xj) : P (X0, X1, . . . , Xj−1|Xj))
+
= K(z) .

The fact that the initial distribution of the hypothetical process

Xj → Xj−1 → · · · → X0

shares algorithmic information with the transition probabilities
makes the hypothesis suspicious.

Resolving time series

We have seen that the algorithmic dependence between
“initial condition” and “transition rule” of the backward time
process (which would be surprising if it occurred for the for-
ward time process) represents an asymmetry of non-stationary
time-series with respect to time reflection. We will now discuss
this asymmetry after resolving the statistical sample into
individual observations.

Assume we are givenm instances ofn-tuplesx
(i)
1 , . . . , x

(i)
n

with i = 1, . . . , m that have been i.i.d. sampled from
P (X1, . . . , Xn) andX1, . . . , Xn are part of a time series that
can be described by a first order stationary Markov process.
Our resolution of a statistical sample generated byX → Y
contained a sourceS and a machineM . The source generates
x-values and the machine generatesy-values from the input
x. The algorithmic independence ofS and M was essential
for the asymmetry between cause and effect described in
Subsection III-B. For the causal chain

· · · → X1 → X2 → X3 → · · ·

we would therefore have machinesMj generating thexj -value
from xj−1. However, for stationary time-series allMj are the
samemachine. The causal structure of the resolution of the
statistical sample form = 2 is shown in fig. 10, left.

This graph entails no independence constraint that is asym-
metric with respect to reversing the time direction. To see this,
recall that two DAGs entail the same set of independences if
and only if they have the same skeleton (i.e. the corresponding
undirected graphs coincide) and the same set of unshielded
colliders (v-structures), i.e., substructuresA→ C ← B where
A andB are non-adjacent (Theorem 1.2.8 in [1]). Fig. 10 has
no suchv-structure and the skeleton is obviously symmetric
with respect to time-inversion.

The initial part is, however, asymmetric (in agreement with
the asymmetries entailed by fig. 6, left) and we have

I(x
(1)
0 : x

(2)
1 |(x

(2)
0 )∗)

+
= 0 .

This is just the finite-sample analog of the statement that the
initial distributionP (X0) and the transition ruleP (Xj |Xj−1)
are algorithmically independent.

IV. D ECIDABLE MODIFICATIONS OF THE INFERENCE RULE

To use the algorithmic Markov condition in practical ap-
plications we have to replace it withcomputablenotions of
complexity. The following two subsections discuss different
directions along which practical inference rules can be devel-
oped.
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Fig. 10. Left: causal graph of a time series. The valuesx
(j)
i corresponds to thejth instance at timei. Right: the initial part of the time-series

is asymmetric with respect to time-inversion.

A. Causal inference using symmetry constraints

We have seen that the algorithmic causal Markov condition
implies that the the sum of the Kolmogorov complexities
of the Markov kernels must be minimized over all possible
causal graphs. In practical applications, it is natural to replace
the minimization of Kolmogorov complexity with a decidable
simplicity criterion even though this makes the relation tothe
theory developed so far rather vague. In this subsection we
sketch some ideas on how to develop empirically decidable
inference rules whose relation to Kolmogorov complexity of
conditionals is closer than it may seem at first glance.

Moreover, the example below shows a scenario where the
causal hypothesisX → Y can already be preferred toY → X
by comparing only themarginaldistributionsP (X) andP (Y )
and observing that a simple conditionalP (Y |X) leads from
the former to the latter but nosimple conditional leads into
the opposite direction. The example will furthermore show
why the identification of causal directions is often easier for
probabilistic causal relations than fordeterministicones, a
point that has also been pointed out by Pearl [1] in a different
context.

Consider the discrete probability space{1, . . . , N}. Given
two distributionsP (X), P (Y ) like the ones depicted in fig. 11
for N = 120. The marginalP (X) consists ofk sharp peaks
of equal height at positionsn1, . . . , nk andP (Y ) also hask
modes centered at the same positions, but with greater width.
We assume thatP (Y ) can be obtained fromP (X) by repeat-

edly applying a doubly stochastic matrixA = (aij)i,j=1,...,N

with aii = 1 − 2p for p ∈ (0, 1/2) and aij = p for
i = j ± 1(mod N). The stochastic mapA thus defines a
random walk and we have by assumption

P (Y ) = AmP (X)

for somem ∈ N.
Now we ask which causal hypothesis is more likely: (1)

P (Y ) has been obtained fromP (X) by some stochastic map
M . (2) P (X) has been obtained fromP (Y ) by some stochas-
tic mapM̃ . Our assumptions already contain an exampleM
that corresponds to the first hypothesis (M := Am). Clearly,
there also exist maps̃M for hypothesis (2). One example
would be

M̃ := [P (X), P (X), . . . , P (X)] , (36)

i.e. M has the probability vectorP (X) in every column.
To describe in which senseX → Y is the simpler hy-

pothesis we observe that̃M in eq. (36) already contains the
description of the positionsn1, . . . , nk whereasM = Am is
rather simple. The Kolmogorov complexity of̃M as chosen
above is for a generic choice of the positionsn1, . . . , nk given
by

K(M̃)
+
= K(P (Y ))

+
= log

(
N

k

)
,

where
+
= denotes equality up to a term that does not depend

on N . This is because different locationsn1, . . . , nk of the
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Fig. 11. Two probability distributionsP (X) (left) andP (Y ) (right) on the set{1, . . . , 120} both having4 peaks at the positionsn1, . . . , n4,
but the peaks inP (X) are well-localized and those ofP (Y ) are smeared out by a random walk

original peaks lead to different distributionsP (Y ) and, con-
versely, every suchP (Y ) is uniquely defined by describing
the positions of the corresponding sharp peaks andM .

However, we want to prove that also other choices ofM̃
necessarily have high values of Kolmogorov complexity. We
first need the following result.

Lemma 10 (average complexity of stochastic maps):
Let (Qj(X))j=1,...,ℓ and (Qj(Y ))j=1,...,ℓ be two families of

marginal distributions ofX andY , respectively. Moreover, let
(Aj)j=1,...ℓ be a family of not necessarily different stochastic
matrices withAjQj(Y ) = Qj(X). Then

1

ℓ

ℓ∑

j=1

K(Aj) ≥ I(X ; J)− I(Y ; J) , (37)

where the information thatX contains about the indexj is
given by

I(X ; J) := H
(1

ℓ

∑

j

Qj(X)
)
− 1

ℓ

∑

j

H(Qj(X)) ,

J denotes the random variable with valuesj. Here, H(.)
denotes the Shannon entropy andI(Y ; J) is computed in a
similar way asI(X ; J) usingQj(Y ) instead ofQj(X).

Proof: The intuition is the following. IfI(X ; J) is properly
greater thanI(Y ; J), it is not possible that allAj coincide
because applying a fixed stochastic matrix cannot increase
the information about the index variableJ due to the data
processing inequality. ApplyingAj can only increase the in-
formation onJ by the amount of information that the matrices
Aj contain aboutJ . Then the statement follows because the
average Kolmogorov complexity of a set of objects cannot be
smaller than the entropy of the probability distribution oftheir
occurrence.

To show this formally, we define a partition of{1, . . . , ℓ}
into d setsS1, . . . , Sd for which the Aj coincide. In other
words, we haveAj = Br if j ∈ Sr and the matrices
B1, . . . , Bd are chosen appropriately. We define a random
variable R whose valuer indicates thatj lies in the rth

equivalence class. The above “data processing argument”
implies

I(X ; J |R) ≤ I(Y ; J |R) . (38)

Then we have:

I(X ; J) = I(X ; J, R) = I(X ; R) + I(X ; J |R)

≤ H(R) + I(Y ; J |R)

≤ H(R) + I(Y ; J) .

The first equality follows becauseR contains noadditional
information onX (whenJ is known) since it describes only
from which equivalence classj is taken. The second equality
is a general rule for mutual information [4]. The first inequality
usesI(X : R) ≤ H(R). The last inequality follows similar as
the equalities in the first line. Let nownr denote the number
of times Br occurs in the set{Aj}j=1,...,ℓ. The distribution
of R is formally defined viap(r) := nr/ℓ. Then we have

∑

r

p(r)K(Br) ≥ H(R) . (39)

This follows easily from Jensen’s inequality [4] via

∑

r

p(r) log
2−K(Br)

p(r)
≤ log

∑

r

2−K(Br) ≤ 0 ,

where the last step uses Kraft’s inequality. Recalling thatthe
left hand sides of eq. (39) and ineq. (37) coincide by definition
completes the proof.�

To apply Lemma 10 to the above example we define families
of ℓ :=

(
N
k

)
distributionsPj(X) having peaks of equal height

at the positionsn1, . . . , nk and also their smoothed versions
Pj(Y ). Mixing all probability distributions will generate the
entropylog N for Pj(X) because we then obtain the uniform
distribution. Since we have assumed thatPj(Y ) is obtained
from Pj(X) by a doubly stochastic map, mixing allPj(Y )
also yields the uniform distribution. Hence the difference
betweenI(X : J) andI(Y : J) is simply given by the average
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Fig. 12. Two probability distributionsP (X) (solid) and P (Y )
(dashed) whereP (Y ) can be obtained fromP (X) by convolution
with a Gaussian distribution

entropy difference

∆H :=
1

ℓ

ℓ∑

j=1

(
H(Pj(Y ))−H(Pj(X))

)
.

The Kolmogorov complexity required to mapPj(Y ) to Pj(X)
is thus, on average over allj, at least the entropy generated by
the double stochastic random walk. Hence we have shown that
a typical example of two distributions with peaks at arbitrary
positionsn1, . . . , nk needs a process̃M whose Kolmogorov
complexity is at least the entropy difference.

One may ask why to consider distributions with several
peaks even though the above result will formally also apply
to distributionsPj(X) and Pj(Y ) with only one peak. The
problem is that the statement “two distributions have a peak
at the same position” does not necessarily make sense for
empirical data. This is because the definition of variables is
often chosen such that the distribution becomes centralized.
The statement thatmultiplepeaks occur on seemingly random
positions seems therefore more sensible than the statementthat
onepeak has been observed at a random position.

We have above used a finite number of discrete bins in
order or keep the problem as much combinatorial as possible.
In reality, we would rather expect a scenario like the one in
fig. 12 where two distributions onR have the same peaks,
but the peaks in the one distribution have been smoothed, for
example by an additive Gaussian noise.

As above, we would rather assume thatX is the cause of
Y than vice versa since the smoothing process is simpler than
any process that leads in the opposite direction. We emphasize
that denoisingis an operation that cannot be represented by a
stochasticmatrix, it is a linear operation that can be applied to
the whole data set in order to reconstruct the original peaks,
the corresponding matrix contains also negative entries. The
statement is thus that no simplestochastic processleads in the
opposite direction. To further discuss the rationale behind this
way of reasoning we introduce another notion of simplicity
that does not refer to Kolmogorov complexity. To this end,
we introduce the notion of translation covariant conditional
probabilities:

Definition 7 (translation covariance):
Let X, Y be two real-valued random variables. A conditional
distributionP (Y |X) with densityP (y|x) is called translation
covariant if

P (y|x + t) = P (y − t|x) ∀t ∈ R .

Translation covariant conditionals are always given by con-
volutions with some probability measure. Therefore, they can
never decrease the entropy. Increase of entropy can therefore
quantify the amount of non-covariance. We want to describe
further options for quantifying non-covariance. To this end, we
introduce a concept from statistical estimation theory [44]:

Definition 8 (Fisher information):
Let P (x) be a continuously differentiable probability density
of P (X) on R. Then the Fisher information with respect to
the translation is defined as

F (P (X)) :=

∫ (
d

dx
lnP (x)

)2

P (x)dx .

Actually, Fisher information is defined for afamily of
distributions. The above expression is obtained by defining
the family of shifted densities viaPt(x) := P (x− t).

Then we have the following Lemma (see Lemma 1 in [45]
showing the statement in a more general setting that includes
also quantum stochastic maps):

Lemma 11 (monotonicity under covariant maps):
Let P (X, Y ) be a joint distribution such thatP (Y |X) is
translation covariant. Then

F (P (Y )) ≤ F (P (X)) .

The intuition is thatF quantifies the degree to which a
distribution is non-invariant with respect to translations and
that no translation covariant process is able to increase this
measure. The convolution with a non-degenerate distribution
decreases the Fisher information. Hence there is no translation
covariant stochastic map in backward direction.

We can also consider more general symmetries:
Definition 9 (general group covariance):

Let X, Y be random variables with equal rangeS. Let G be
a group of bijectionsg : S → S and Xg and Y g denoting
the random variables obtained by permuting the outcomes of
the corresponding random experiment according tog. Then
we call a conditionalP (Y |X) G-covariant if

P (Y g|X)) = P (Y |Xg−1

) ∀g ∈ G .

It is easy to see that covariant stochastic maps define a
quasi-order of probability distributions onS by definingP ≥
P̃ if there is a covariant stochastic mapA such thatAP = P̃ .
This is transitive since the concatenation of covariant maps is
again covariant.

If a G-invariant measureµ (“Haar measure”) exists onG
we can easily define an information theoretic quantity that
measures the degree of non-invariance with respect toG:

Definition 10 (reference information):
Let P (X) be a distribution onS andG be a group of measure
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preserving bijections onS with Haar measureµ. Then the
reference information is given by:

IG := H

(∫

G

P
[
Xg

]
dµ(g)

)
−

∫

G

H
(
P (Xg)

)
dµ(g)

= H

(∫

G

P
[
Xg

]
dµ(g)

)
−H(P (X)) . (40)

The name “reference information” has been used in [46] in
a slightly different context where this information occurred as
the value of a physical system for communicating a reference
system (e.g. spatial or temporal) whereG describes, for
instance, translations in time or space. For non-compact groups
(translations of aperiodic functions), however, there is no
averaging operation. For the groupR, the Fisher information
thus provides a better concept to quantify the non-invariance
under the group operation. The quantityIG can easily be
interpreted as mutual informationI(X : Z) if we introduce
a G-valued random variableZ whose values indicate which
transformationg has been applied. One can thus show thatIG

is non-increasing with respect to everyG-covariant map [46],
[47].

The following model describes a link between inferring
causal directions by preferring covariant conditionals over
non-covariant ones to preferring directions with algorithmi-
cally independent Markov kernels. Consider first the proba-
bility spaceS := {0, 1}. We define the groupG := Z2 =
({0, 1},⊕), i.e., the additive group of integers modulo2,
acting onS as bit-flips or identity. For any distribution on
P on {0, 1}, the reference informationIG(P ) then measures
the asymmetry with respect to bit-flips. Here, the first term
on the right hand side of eq. (40) here is the entropy of the
uniform distribution and we obtain:

IG(P ) = log 2−H(P ) .

Hence, the decrease of reference information coincides here
with an increase of entropy.

More generally speaking, it can happen for two distributions
P and P̃ that aG-symmetric stochastic matrix leads fromP
to P̃ , but only asymmetric stochastic maps convertP̃ into
P . To give a more interesting example where the relation to
algorithmic information becomes more evident is the follow-
ing. We consider the groupZn

2 acting on strings of lengthn
by independent bit-flips. Assume we have a distribution on
{0, 1}n of the formPc in Definition 5 for some stringc and
generate the distributioñPc by applyingM to Pc where

M :=

(
1− ǫ1 ǫ1

ǫ1 1− ǫ1

)
⊗

(
1− ǫ2 ǫ2

ǫ2 1− ǫ2

)
⊗ · · ·

⊗
(

1− ǫn ǫn

ǫn 1− ǫn

)
,

with ǫj ∈ (0, 1). ThenM is G-symmetric, but noG-symmetric
process leads backwards. This is because every such stochastic
map would be asymmetric in a way that encodesc, i.e., the
map would have “to know”c becauseM has destroyed some
amount of information about it.

We summarize the general idea of this subsection as follows.
If we observe thatP (Y |X) is group-covariant butP (X |Y )

is not, we tend to prefer the causal hypothesisX → Y to
Y → X . Rather than justifying such a conclusion by Occam’s
Razor only, we have described the link to the algorithmic
independence of conditionals. For our examples the non-
covariance ofP (X |Y ) expressed the fact that this conditional
was adapted to the specific instance ofP (Y ).

B. Resource-bounded complexity

The problem that the presence or absence of mutual infor-
mation is undecidable (when defined via Kolmogorov com-
plexities) is similar to statistics, but also different in other
respects. Let us first focus on the analogy. Given two real-
valued random variablesX, Y , it is impossible to show by
finite sampling that they are statistically independent.X ⊥⊥ Y
is equivalent toE(f(X)g(Y )) = E(f(X))E(g(Y )) for every
pair (f, g) of measurable functions. If we observe significant
correlations betweenf(X) and g(Y ) for some pair defined
in advance, it is well-justified to reject independence. The
same holds if such correlations are detected forf, g in some
sufficiently small set of functions (cf. [48]) that was defined in
advance. However, if this is not the case, we can never be sure
that there is not some pair of arbitrarily complex functions
f, g that are correlated with respect to the true distribution.
Likewise, if we have two stringsx, y and find no simple
program that computesx from y this does not mean that there
is no such a rule. Hence, we also have the statement that there
can be an algorithmic dependence even though we do not find
it.

However, the difference to the statistical situation is the
following. Given that we have found functionsf, g yielding
correlations it is only a matter of the statistical significance
level whether this is sufficient to reject independence. For
algorithmic dependences, we do not even have a decidable
criterion to rejectindependence. Given that we have found a
simple program that computesx from y, it still may be true
that I(x : y) is small because there may also be a simple
rule to generatex (which would implyI(x : y) ≈ 0) that we
were not able to find. This shows that we can neither show
dependence nor independence.

One possible answer to these problems is that Kolmogorov
complexity is only an idealization of empirically decidable
quantities. Developing this idealization only aims at provid-
ing hints in which directions we have to develop practical
inference rules. Compression algorithms have already been
developed that are intended to approximate, for instance, the
algorithmic information of genetic sequences [49], [50]. Chen
et al. [50] constructed a “conditional compression scheme”to
approximate conditional Kolmogorov complexity and applied
it to the estimation of the algorithmic mutual information
between two genetic sequences. To evaluate to which extent
methods of this kind can be used for causal inference using
the algorithmic Markov condition is an interesting subjectof
further research.

It is also noteworthy that there is a theory onresource-
boundeddescription complexity [22] where compressions of
x are only allowed if the decompression can be performed
within a previously defined number of computation steps and
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on a tape of previously defined length. An important advantage
of resource-bounded complexity is that it is computable. The
disadvantage, on the other hand, is that the mathematical
theory is more difficult. Parts of this paper have been de-
veloped by converting statements on statistical dependences
into their algorithmic counterpart. The strong analogy between
statistical and algorithmic mutual information occurs only
for complexity with unbounded resources. For instance, the
symmetryI(x : y)

+
= I(y : x) breaks down when replacing

Kolmogorov complexity with resource-bounded versions [22].
Nevertheless, to develop a theory of inferred causation using
resource-boundedcomplexity could be a challenge for the
future. There are several reasons to believe that taking into
account computational complexity can provide additional hints
on the causal structure:

Bennett [51], [52], [53], for instance, has argued that the
logical depthof an object echoes in some sense its history.
The former is, roughly speaking, defined as follows. Letx
be a string that describes the object ands be its shortest
description. Then the logical depth ofx is the number of time
steps that a parallel computing device requires to computex
from s. According to Bennett, large logical depth indicates
that the object has been created by a process that consisted
of many non-trivial steps. This would mean that there also is
some causal information that follows from the time-resources
required to compute a string from its shortest description.

The time-resources required to compute one observation
from the other also plays a role in the discussion of causal
inference rules in [43]. The paper presents a model where the
conditional

P (effect|cause)

can beefficientlycomputed, while computing

P (cause|effect)

is NP-hard. This suggests that the computation time required
to use information of the cause for the description of the effect
can be different from the time needed to obtain information
on the cause from the effect. However, the goal of the present
paper was to describe asymmetries between cause and effect
that even occur when computational complexity is ignored.

V. CONCLUSIONS

We have shown that our algorithmic causal Markov con-
dition links algorithmic dependences between single obser-
vations (i.e., when the statistical sample size is one) with
the underlying causal structure. This is similar to the way
the statistical causal Markov condition links statisticaldepen-
dences among random variables to the causal structure. The
algorithmic Markov condition has implications on different
levels:

(1) In conventional causal inference one can drop the assump-
tion that observations

(x
(i)
1 , . . . , x(i)

n )

have been generated byindependentsampling from a constant
joint distribution

P (X1, . . . , Xn)

of n random variablesX1, . . . , Xn. Algorithmic informa-
tion theory thus replaces statistical causal inference with a
probability-free formulation.

(2) Causal relations among individual objects can be inferred
provided their shortest descriptions are sufficiently complex.
Then the Kolmogorov complexities must be estimated, e.g.,
by the compression length with respect to appropriate com-
pression schemes.

(3) New statistical causal inference rules follow because causal
hypotheses are suspicious if the corresponding Markov kernels
are algorithmically dependent. Remarkably, this criterion can
in principle be used to reject a causal hypothesis without
comparing it to another hypothesis. If all causal DAGs under
consideration are rejected because independence of condition-
als holds for none of the causal directions, the model class is
too small (e.g. one has to account for hidden common causes
rather than assuming that the observed variables are causally
sufficient).

Since algorithmic mutual information is uncomputable be-
cause Kolmogorov complexity is uncomputable, we have
discussed some ideas on how to develop inference rules that
are motivated by the uncomputable idealization.
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