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. INTRODUCTION TO CAUSAL INFERENCE FROM
STATISTICAL DATA

Causal inference from statistical data has attracted asere
ing interest in the past decade. In contrast to traditional
statistics where statistical dependences are only takprote
that some kind of relation between random variables exists,

causal inference methods in machine learning are explicitl

keywordsalgorithmic information, Church-Turing thesis, datayegjgned to generate hypotheses on causal directions atitom
compression, graphical models, probability-free causdéi- .oy hased upon statistical observations, e.g., via it

ence independence tests [1], [2]. The crucial assumption carnnec
ing statistics with causality is the causal Markov conditio
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to nodeX; indicates a direct causal effect. Here the tefiract
is understood with respect to the chosen set of variables in
the sense that the information flow between the two variables
considered is not performed via using one or more of the
other variables as intermediate nodes. We will next briefly
$ephrase the postulates that are required in the statigtmary

18f inferred causation [2], [1].
13

A. Causal Markov condition

When we consider the causal structure that linkandom
variablesV = {X,...,X,} we will implicity assume
13that V is causally sufficient in the sense that all common

causes of two variables iw are also inV. Then a causal
17hypothesisG is only acceptable as potential causal structure
if the joint distribution P(X,, ..., X,,) satisfies the Markov
condition with respect té-. There are several formulations of
the Markov condition that are known to coincide under some



technical conditions (see Lemma 1). We will first introduceauses “screens off” the relation to variables other than th
the following version which is sometimes referred to as thdescendants. However, the independences postulated by the
parentalor thelocal Markov condition [3]. local Markov condition imply additional independencesisit

To this end, we introduce the following notationBA; is therefore hard to decide whether an independence must hold
the set of parents ak; and ND; the set of non-descendantdor a Markovian distribution or not, solely on the basis o th
of X; except itself. IfS,T, R are sets of random variableslocal formulation. In contrast, the global Markov conditio
S I T|R meansS is statistically independent &, given R. makes the complete set of independences obvious. To state

o N ) it we first have to introduce the following graph-theoretica
Postulate: statistical causal Markov condition, local vesion concept.

If a directed acyclic graphG formalizes the causal structure pefinition 1 (d-separation):

among the random variables’, ..., X,.. Then A pathp in a DAG is said to be blocked by a set of nodes
X, L ND, |PA;, (1) 4 ifand only if
) 1) p contains a chain — m — j or a forki «— m — j
forall j=1,....n. such that the middle node is in Z, or

r‘?) p contains an inverted fork (or collider) — m «— j
such that the middle node: is not in Z and such that
no descendant af: is in Z.

The strength of violating statistical dependences is ofte
measured in terms of mutual information. For three sets of
variablesX, Y, Z one defines the conditional mutual informa-

tion of X andY’, givenZ by [4] A set Z is said to d-separat&’ from Y if Z blocks every
(possibly undirected) path from a node X to a node inY".
I(X;Y|Z) = H(X|Z)+ H(Y|Z) - H(X,Y|Z), The following Lemma shows that d-separation is the correct

where the Shannon entropies read as follows. Assur‘ﬁ%ndition for deciding \(v_hether an independence is impligd b
that the distribution P(X1,..., X, Z) has the density the local Markov _condmon (see [5], T_h_eorem 3.27):
P(z1,...,4,2) and a conditional densitP(z,...,ay|z)  Lemmal (equivalent Markov conditions): _

with respect to some measuze(which may, for instance, be L&t P(X1,...,X,) have a densiyP(z1,. .., z,) with re-

the Lebesgue measure if all variables are continuous and SRECt t0 @ product measure. Then the following three state-

counting measure if they are discrete), then we have ments are equivalent: _ o
I. Recursive form: P admits the factorization

H(Xq,...,X|Z) = —/P(xl,...,xk,z) n
P(x1,...,x0) = [ [ Plajlpay), (2)
x log P(x1,...,xk|2)du(x, ... 2k, 2) . i
We call condition (1) thestatistical causal Markov condi- whereP(.|pa;) is shorthand for the conditional probabil-

tion because we will later introduce an algorithmic version ity density, given the values of all parents &f,.

The fact that conditional irrelevance not only occurs in thell. Local (or parental) Markov condition: for every node
context ofstatisticaldependences has been emphasized in the X; we have

literature (e.g. [5], [1]) in the context of describing alast X; L ND;|PA;,

properties (like semi-graphoid axioms) of the relatiat - |-.

We will therefore state the causal Markov condition also in
an abstract form that does not refer to any specific notion ?ﬁ
conditional informational irrelevance: '

i.e., it is conditionally independent of its non-desceridan
(except itself), given its parents.

Global Markov condition:

L SLTIR

Postulate: abstract causal Markov condition, local

Given all the direct causes of an observableits non-effects for all three setsS, T', R of nodes for whichS andT are
provide no additional information om. d-separated by?.

Moreover, the local and the global Markov condition are

Here, observables denote something in the real world thatiyalent even it does not have a density with respect to
can be observed and the observation of which can be form&'broduct measure.

ized in terms of a mathematical language. In this paper,y/@bse The conditional densities?(z;|pa;) are also called the

ables will either be random variables (formalizing stét&t p1arkov kernelsrelative to the hypothetical causal graph

quantities) or they will be strings (formalizing the deption ¢ js important to note that every choice of Markov kernels

of objects). Accordingly, information will bestatistical or  gefine a Markovian densit, i.e., the Markov kernels define

algorithmic mutual information, respectively.  gyactly the set of free parameters remaining after the ¢ausa
The importance of the causal Markov condition lies in thgi,cture has been specified.

fact that it links causal terms like “direct causes” and “hon T4 select graphs among those for whiéh satisfies the

effects” to informational relevance of observables. Thealo p\jarkov condition, we also need an additional postulate:

Markov condition is rather intuitive because it echoes the

fact that the information flows from direct causes to thelPostulate: causal faithfulness

effect and every dependence between a node and its ndmong all graphsG for which P is Markovian, prefer the

descendants involves the direct causes. Conditioning @etdi ones for which all the observed conditional independences i



the joint measure’(X;, ..., X,,) are imposed by the Markov to the functional model in Postulate 3 satisfies the local and
condition. the global Markov condition relative t&.

) . ) . ~ We rephrase the proof in [1] because our proof for the
The idea is that the set of observed independences is typiggjorithmic version will rely on the same idea.

for the causal structure under consideration rather thamgbe R

the result of specific choices of the Markov kernels. ThiBroof of Lemma 2: extends to a graphG with nodes
becomes even more intuitive when we restrict our attentio%y, ..., X,, N1,..., N, that additionally contains an arrow
to random variables with finite range and observe that tfi®m eachN; to X;. The given joint distribution of noise
values P(z;|pa;) then define a natural parameterization ofariables induces a joint distribution

the set of Markovian distributions in a finite dimensional .

space. The non-faithful distributions form a submanifofd o P(X1,..., X, Ny, Na),

lower dimension, i.e., a set of Lebesgue measure zero [fat satisfies the local Markov condition with respectcio
They therefore almost surely don't occur if we assume thﬁ,tst, everyX is completely determined by its parents making
“nature chooses” the Markov kernels for the different nodgfe condition trivial. Second, every, is parentless and thus
independently according to some density on the paramejgs have to check that it is (unconditionally) independent of
space. There are several objections against faithfulivess, jts non-descendants. The latter are deterministic funstiof

only want to mention that deterministic relations can gateer {Ny,...,N,}\ {N,}. Hence the independence follows from
unfaithful distributions. The fact that deterministic a80ns the joint independence of alV;.

are not that uncommon shows that “nature does sometime@y Lemma 1.P is also globally Markovian W.LIC. Then

choose” from sets of measure zero. ~we observe thatVD; and X; are d-separated it (where
The above “zero Lebesgue measure argument” is Clog@ parents and non-descendants are defined with respect to
to the spirit of Bayesian approaches [7], where priors af) given PA;. HenceP satisfies the local Markov condition

the set of Markov kernels are specified for every possibigr.t. ¢ and hence also the global Markov conditic.
hypothetical causal DAG and causal inference is performed

by maximizing posterior probabilities for hypothetical B4, Functional models formalize the idea that the outcome
given the observed data. This procedure leads timalicit of an experiment is completely determined by the values
preference of faithful structures in the infinite samplingit of all relevant parameters where the only uncertainty stems
given appropriate conditions for the priors on the parametisom the fact that some of these parameters are hidden.
space. The assumption that “nature chooses Markov kerngigen though this kind of determinism is in contrast with the
independently”, which is also part of the Bayesian apprpagtommonly accepted interpretation of quantum mechanics [8]
will turn out to be closely related to the algorithmic Markowve still consider functional models as a helpful framework
condition postulated in this paper. for discussing causality in real life since quantum mecteini
We now discuss the justification of the statistical causkws refer mainly to phenomena in micro-physics. The deter-
Markov condition because we will later justify the algorittt  ministic function in functional models nicely representisal
Markov condition in a similar way. To this end, we introducénechanisms that persist also after manipulating the bigtdn

functional models [1]: of inputs. The framework thus formalizes the modularity of
causal structure: every function represents a causal merha
Postulate: functional model of causality that exists independently of the others.
If a directed acyclic graph formalizes the causal relation  Causal inference using the Markov condition and the faith-
between the random variablés,, ..., Xy then everyX; can fulness assumption has been implemented in causal learning
be written as a deterministic function d?A; and a noise algorithms [2]. The following fundamental limitations dfese
variable N; , methods deserve our further attention:
X, = f;(PA;,N;), 3) 1) Markov equivalenceThere are only few cases where the
inference rules provide unique causal graphs. Often one
where all V; are jointly independent. ends up with aclass of Markov equivalergraphs, i.e.,

graphs that entail the same set of independences. For
this reason, additional inference rules are desirable. In
particular, deciding whetheX causesY or Y causes

X for just two observed variables is a challenging task

for novel inference rules [9] since it is unsolvable for

Note that this model does not put any mathematical re-
striction on the conditionals P(X;|PA;). Given that the
joint distribution factorizes as in eq. (2) the model thugsio
not restrict the set of possible joint distributions anytlfier.
However, the functional model can be used to justify the aaus independence-based methods.

Markov condition since we have [1], Theorem 1.4.1: 2) Dependence on i.i.d. samplinghe whole setting of

Lemma 2 (Markov condition in functional models): causal inference relies on the ability to sample repeat-
Every joint distributionP (X3, ..., X,,) generated according edly and independently from the same joint distribu-

tion P(X,,...,X,). As opposed to this assumption,

1To see this, letV; consist of (possibly uncountably many) real-valued causal inference in real life also deals with probability
random variablesN; [pa;], one for each valuga,; of parentsPA;. Let

N; [pa] be distributed according t8(X |pa; ), and definef;(PA;|N;) = distributior_ls tha’; change iln time. Even though the_re
Njlpaj). Then X;|PA; obviously has distributioP(X ;| PA;). are techniques in conventional statistics to cope with



this problem, there are no methods for inferring causal
relations among single observations, i.e., for the case of
sample size one.

The idea of this paper is to develop a theory of probability-
free causal inference that helps to construct causal hgpeth
based on similarities okingle objects. Then the nodes of
the directed acyclic graph formalizing the causal struetine
single objects. Here, similarities between these objedtdes
defined by comparing the length of the shortest descriptfon o
single objects to the length of their shortest joint degmip y
Despite the analogy to causal inference from statisticé da
our theory also implies nestatisticalinference rules. In_other Fig. 2. Observed joint distribution of¢ andy consisting of two
words, our approach to address weakness 2 also yields ssians of equal width shifted against each other.
methods to address 1.

The paper is structured as follows. In the remaining part
of this Section, i.e., Subsection I-B, we describe recent aghere)\ determines the shift of the mean caused by switching
proaches from the literature to causal inference fromsitedl petweenr = 1 andz = —1.
data that address problem 1 above. In Section Il we devep th The marginalP(Y) is given by
general theory on inferring causal relations among indiald
objects based on algorithmic information. This framework P 11 < _ (w—ptn)? _(yu/\)z) @

P(1,y)

. . . X Y) = -—F— 202 +e 202
appears, at first sight, as a straightforward adaption of the 2027

statistical framework using well-known correspondences bO

o o . ne will prefer the causal structur® Y compared to
tween statistical and algorithmic information theory. Hwer, P = P

Section 11l d ibes that this imoli | | infie Y — X because the former explains in a natural way why
ection escribes that this implies novel causal inexe P(Y) is bimodal: the effect ofX onY is simply to shift the

rules for statisticalinference becauseon-statisticalalgorith- Gaussian distribution by\. In the latter model the bimodality
mic depend_ences can even occur.in data that were obtaira? (Y') remains unexplainetl.To prefer one causal model
from statistical sampling. In Sep'uon IV we sketch som another one because the corresponding conditionals are
ideas on how to replace causal inference rules based on pler seems to be a natural application of Occam’s Razor.
uncomputablealgorithmic informationwith decidable criteria However. Section Il will show that such an inference rule
that are still mot_ivated by the .uncomputable i(_jealization. also follows from the theory developed in the present paper
The table in fig. 1 summarizes the analogies between fig o, simplicity is meant in the sense of low Kolmogorov

theory of statistical and the theory of algorithmic causalympexity. In the remaining part of this section we will e

inference described in this paper. The differences, hoWeV§ome approaches to implement the “principle of plausible

which are the m_ain subject of Sections Il to IV, can hard')(/larkov kernels” in practical applications.
be represented in the table. In [10] we have defined a family of “plausible Markov
kernels” by conditionalsP(X,|PA;) that are second order
exponential models, i.elog P(z;|pa;) is a polynomial of
B. Developing new statistical inference rules order two in the variabled X;} U {PA;} up to some ad-
ditive partition function (for normalization) that dependnly
the variablesPA;. For every hypothetical causal graph,
e thus obtains a family of “plausible joint distributions
(X1,...,Xp)" that are products of the plausible Markov

Ploffect) P . Th lizati f thi inciol kernels. Then we prefer the causal direction for which the
(effect) P(causeleffect). The generalization orthis princip eplausible joint distributions provide the best fit for thevayi
reads: Among all graphs that rende® Markovian prefer the observations

one for which the decomposition in eq. (2) yields the simiples In [11] we have proposed the following principle for causal

Markov kernels. We have ca,\’IIed this vague idea the l:)r'mac'pfnference: Given a joint distribution of the random varisbl
of plausible Markov kernels”.

In [10], [11] we have proposed causal inference rul
that are based on the idea that the factorization 8
P(cause, effect) into P(effect|cause) and P(cause) typically P
leads to simpler terms than the “artificial” factorizatiamtd

. . . ... . X1,...,X,, prefer a causal structure for which
Before we describe several options to define simplicity
we describe a simple example to illustrate the idea. Assume n
we have observed that a binary variable (with values ZC(P(XJ’|PAJ')) ®)
x = —1,1) and a continuous variabl® with values inR i=1

that are distributed according to a mixture of two Gaussiags minimal, whereC' is some complexity measure on condi-
(see fig. 2). Since this will simplify the further discussil@t tjonal probability densities.
us assume that the two components are equally weighted, i.e.

1 1 (e rany? 2Using Reichenbach’s terminology [12] and Salmon’s “madngmission

5.2 theory” [13], the cause leaves “some kind of mark on its d¢ffekcere, the

P(z,y) = 92 oA /27Te ’ distribution P(X') can be identified from separating the two modes¢t").



observables
(vertices of a DAG)

observations

conditional independence

I. recursion formula

Il. local Markov condition
Il. global Markov
condition

equivalence of I-lll
functional models
functional models

imply Markov condition

decidable dependence
criteria

statistical

random variables
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X1Y|Z

T
I(X;Y|Z)=0
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X; L ND;|PA;
d-separation
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statistical independence

Theorem 3.27
in [5]

Section 1.4
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Theorem 1.4.1
in [1]

assumptions on
joint distribution

Fig. 1. Analogies between statistical and algorithmic causalrérfee

algorithmic

sequences of strings

strings

z Lylz

)

I(z:ylz) 0
K(x1,...,25)
5, K aslpa3)
xj L nd; |pa;7
d-separation
=

algorithmic independence

Theorem 3
Eq. (21)
Theorem 4

Section IV

There is also another recent proposal for new inferenddference between human causal learning and the inference
rules that refers to a related simplicity assumption, thougules in [2], [1] is that the former is also about causal
formally quite different from the ones above. The authors oélations amongingleobjects and does not necessarily require

[14] observe that there are joint distributions &f, ..., X,

sampling. Assume, for instance, that the comparison of two

that can be explained by a linear model with additive noriexts show similarities (see e.g. [15]) such that the autfor
Gaussian noise for one causal direction but require naratin the text that appeared later is blamed to have copied it flem t
causal influence for the other causal directions. For retd dather one or both are blamed to have copied from a third one.
they prefer the causal graph for which the observations arbe statement that the texts are similar could be based on a
statistical analysis of the occurrences of certain wordstoer

To justify the belief that conditionals that correspond tsequences. However, such kind of simple statistical tests c
the true causal direction tend to be simpler than non-causail in both directions: In Subsection 11-B (before Theor&n
conditionals (which is common to all the approaches aboweg will discuss an example showing that they can erroneously

closer to the linear model.

is one of the main goals of this paper.

Il. INFERRING CAUSAL RELATIONS AMONG INDIVIDUAL
OBJECTS

infer causal relations even though they do not exist. This is

because parts that are common to both objects, e.g., the two

texts, are only suitable to prove a causal link if they are not

“too straightforward” to come up with.

It has been emphasized [1] that the application of causalOn the other hand, causal relations can generate sirekriti
inference principles often benefits from the non-detersnmi between texts for which evergfficientstatistical analysis is
of causal relations between the observed random variableslieved to fail. We will describe an idea from cryptography
In contrast, human learning in real-life often is about guitshow this. A cryptosystem is called ROR-CCA-secure (Real
deterministic relations. Apart from that, the most impaotta or Random under Chosen Ciphertext Attacks) if there is no



efficient method to decide whether a text is random or thee useful [23]:

encrypted version of someowntext without knowing the key 4 .

[16]. Given that there are ROR-CCA-secure schemes (Whicr{((x’y) = K(2) + K(yl2") = K(z) + K(ylz, K(2)) . (6)
is unknown but believed by cryptographers) we have a causalrhe conditional version reads [23]:

relation leading to similarities that are not detected by kind n

of simple counting statistics. However, once an attackar ha K(z,yl2) = K(z|2) + K(y|z, K(z[2), 2) @)

found the key (maybe by exhaustive search), he/she re@gnig,e most important notion in this paper will be the algorith-
similarities between the encrypted text and the plain text anic mytyal information measuring the amount of algorithmic

infers a causal relation. The causal relation between (& ¢ormation that two objects have in common. Following the

and its encrypted version leads to a “similarity” that is NQfarature (e.g. [24], [25]) we define:

efficientlydetectable. . ~ Definition 2 (algorithmic mutual information):
This already suggests two things: (1) detecting similesiti | ¢t ;4 be two strings. Then the algorithmic mutual infor-
involves searchingover potential rules how properties of ongnation of z, y is

object can be algorithmically derived from the structureiof
other. (2) It is possible that inferring causal relationsréfore I(z:y) = K(y) — K(ylz").
relies oncomputationally infeasiblélecisions (if computable The mutual information is the number of bits that can be

at all) on whether two objects have information in COMMOL,ved in the description aof when the shortest description of
or not. x is already known. The fact that one usesinstead ofx

ensures that it coincides with the symmetric expressioff [23
Lemma 3 (symmetric version of algorithmic mutual inf.):
For two stringsz, y we have

We will now describe how the information one object pro- N
vides about the other can be measured in terms of Kolmogorov Hw:y) = K@)+ K(y) = K(z,y).
complexity. We start with some notation and terminology. In the following sections, non-vanishing mutual infornoati
Below, strings will always be binary strings since everwill be taken as an indicator for causal relations, but more
description given in terms of a different alphabet can haetailed information on the causal structure will be indelrr
converted into a binary word. The set of binary strings dfom conditional mutual information. This is in contrast to
arbitrary length will be denoted b0, 1}*. Recall that the Kol- approaches from the literature to measure similarity \g&rsu
mogorov complexityK (s) of a strings € {0,1}* is defined differences of single objects that we briefly review now. To
as the length of the shortest program that generatesing measure differences between single objects, e.g. picf2és
a previously defined universal prefix Turing machine [17]27], one defines thaaformation distance”(z, y) between the
[18], [19], [20], [21], [4], [22]. The conditional Kolmogaw two corresponding strings as the length of the shortestramg
complexity K (t|s) [4] of a stringt given another string is that computes: from y andy from z. It can be shown [28]
the length of the shortest program that can generétem s.  that
In order to keep our notation simple we uBgz,y) to refer E(z,y) £ max{K (z|y), K (y|z)} .
to the complexity of the concatenatiafy wherez’ is a prefix
code ofz (equivalently, one can also define a string, from

A. Algorithmic mutual information

However, whetheF (z, y) is small or large is not an appropri-
the pair(z, y) using a standard bijection betweshx N and ate condltlor? for the existence ano_l the stre_ngt_h of a caimdal |
Complex objects can have much information in common even

N). o ) .
) . . . though their distance is large. In order to obtain a measure
We will mostly have equations that are valid only up tg

. . . I relating the amount of information that is disjoint for thveot
addmvg constantterms in the sense that the dlfferen . trings to the amount they share, Li et al. [27] and Bennett et
both sides does not depend on the strings involved in t

equation (but it may depend on the Turing machines they re eF'r [15] use the "normalized distance measure

indi - K(z|ly*) — K(y|z* I(x:
to). To indicate such constants we denote the corresponding dy(z,y) = (zly*) (ylz*) + 1— (z:y)

equality by £ and likewise for inequalities. In this context K(z,y) K(z,y)’
it is important to note that the number of nodes of the or

causal graph is considered to be a constant. Moreover, for d(z,y) = maX{K(ﬂy)’K(ym}.

every strings we defines* as its shortest description. If the max{K (z), K(y)}

latter is not unique, we consider the first one in a lexicofhe intuitive meaning ofl(x, ) is obvious from its direct
graphic order. It is necessary to distinguish betwéefi|s) relation to mutual information, andl — d(z,y) measures the
and K(-|s*). This is because there is a trivial algorithmigraction of the information of the more complex string that
method to generate from s* (just apply the Turing machine js shared with the other one. Bennett et al. [15] propose to
to s*), but there is no algorithm that computes the shortegénstruct evolutionary histories of chain letters usinghsu
descriptions* from a general inpu. One can show [22] that kinds of information distance measures. The algorithmie mu
knowing s* is equivalent to knowing the paiss, K (s)) since tual information to measure the similarity of two objectsha
K(s*|s, K(s)) = K(s,K(s)|s") £ 0. The following equation for instance, been used in [29], [30]. However, like in stital

for the joint algorithmic information of two strings,y will  causal inference, inferring adjacencies on the basis ahgést



Definition 4 (algorithmic conditional independence):
Given three strings:, y, z, we call z conditionally indepen-
dent ofy, givenz (denoted byr I y|z) if

)
")

I(z:y|lz) = 0.

In words: Givenz, the additional knowledge of does not
allow us a stronger compression:af This remains true if we
are given the Kolmogorov complexity af, given z.

@ b The theory developed below will describe laws where
symbols likex, y, z represent arbitrary strings. Then one can
always think ofsequencesf strings of increasing complexity
and statements like “the equation holds up to constant terms
are well-defined. We will then understand conditional inde-
pendence in the sense bfz : y|z) = 0. However, if we are
talking about three fixed strings that represent objecteah

(a ’ b) life, this does not make sense and the threshold for considering
two strings dependent will heavily depend on the context. Fo
this reason, we will not specify the symbesl any further.

This is the same arbitrariness as the cutoff rate for Stzist
Fig. 3. Even though sendef and receiverR are non-adjacent, dependence tests.

they are the pair with maximal mutual information (for thesario N
desycribed in Itohé t\év)l(t). ' dtuat! lon ( ! The definitions and lemmas presented so far were strongly

motivated by the statistical analog. Now we want to focus on
a theorem in [25] that provides a mathematical relationship

dependences is only possible for simple causal structuRgiween algorithmic and statistical mutual informatioirst

like trees. In the general case, non-adjacent nodes cae si¥¢ State the following theorem (see Theorem 7.3.1 of [4]

more information than adjacent ones when information f&d Brudno’s Theorem [31]), showing that the Kolmogorov

propagated via more than one path. To see this, consi@éfmplexity of a random string is approximatively given by

the “diamond graph” shown in fig. 3: The send&rhas two the entropy of the underlying probability distribution:

generic strings:, b. He/she copies the information and sends Theorem 1 (entropy and Kolmogorov complexity):

a to the intermediate nod&’; andb to N,. Then,N; and Letx = z1,22,---,x, be a string whose symbols; € A

N, copy their strings and send them to the receierThe are drawn i.i.d. from a probability distributioR(X) over the

pair mazimizing the mutual information {2, S) (because we finite alphabetA. Slightly overloading notation, se(x) :=

haveI(R : S) = K(a,b) and the others share at masbr b)) P(z1) - P(zy). Let H(.) denote the Shannon entropy of a

even though they are not adjacent. probability distribution. Then there is a constansuch that
Instead of constructing causal neighborhood relations by 1 |Allogn ¢

comparing information distances we will therefore eeadi- H(X) < EE(K(XW) S HX) + ———+~

tional mutual information. ‘In order to define its algorithmicwhere]E

version, we first observe that Definition 2 can be rewrittdo in

the less concise form

Vn,

(.) is short hand for the expected value with respect
to P(x). Moreover,

1
lim —K(x)=H(X) with probability1.
I(z:y) £ K(y) — K(yla, K(x)) . Jim — K (x) = H(X) p y

) ) - However, for our purpose, we need to see the relation
This formula generalizes more naturally to the conditionglenyveen algorithmic and statisticahutual information If
a”a'og [23] N o . ) X = x1,%2, -+, T, andy = yi,yo,---,y, Such that each

Definition 3 (conditional algorithmic mutual information) pair (z,, ;) is drawn i.i.d. from a joint distributio (X, Y),

) N the theorem already shows that
Let z,y,z be three strings. Then the conditional mutual

algorithmic information ofz, y, given z is lim lE(I(x y) =1(X;Y).
n—oo N
I(z : y|2) = K(y|2) — K(y|z, K(z|z), 2) . This can be seen by writing statistical mutual informatien a

As shown in [23] (Remark 11.3), the conditional mutual I(X5Y) = HX) + H(Y) - H(X,Y).
information also is symmetric up to a constant term: The above translations between entropy and algorithmic
Lemma 4 (symmetric algorithmic conditional mutual inf.):information refer to a particular setting and to specialitém
The focus of this paper is mainly the situation where the abov
For three strings:, y, z one has: limits are not justified. Before we rephrase Lemma 1.4 in][23
n which provides insights into the general case, we recatlaha
I(z :y|z) = K(z|2) + K(y[z) — K(z,y]2). function f is called recursive if there is a program on a Turing



machine that computeg(x) from the inputz, and halts on be a binary string of length. Then
all possible inputs.

Theorem 2 (statistical and algorithmic mutual information
Given string-valued random variablé§ Y with a recursive defines a product measure ¢@, 1}". We will later also need
probability mass functior(z, y) over pairs(z,y) of strings. the following generalization: 1Py, Fo1, Pio, P11 are four
We then have distributions on{0,1}, andc,d € {0,1}", then

PC,d = Pcladl ®P027d2®"'®PC dn

ny

P..=P,®FP,® - QF,

I(X;Y) = K(P) < E(I(z : y)) < I(X;Y) + 2K(P)

] ) defines also a family of product measures{@n1}” that is
where K (P) is the length of the shortest prefix-free progranyqjeq by two strings, d.

that computes”(z, y) from (z,y). _ Denote byP®™ them-fold copy of P,. from Definition 5. It
.We want to provide an intuition about various aspects @fscribes a distribution ofn, 1} assigning the probbaility
this theorem. P& (z) to z € {0,1}"™. If

(1) If I(X;Y) is large compared td<(P) the expected  Lem om
algorithmic mutual information is dominated by the statt Q,y) =P (@) P (y),

mutual information. knowledge ofz in the typical case provides knowledge of
(2) If K(P) is no longer assumed to be small, statistic4 Provided thatm is large enough. Then we can compress
dependences do not necessarily ensure that the knowletigeetter than without knowing: because we do not have

of = allows us to compress further than without knowing 0 describec a second time. Hence the algorithmic mutual
2. It could be that the description of the statistical depeffiformation is large and the statistical mutual informatio

dences requires more memory space than its knowledge wol§i¢er0 becaus€) is by construction a product distribution.

save. To see this, consider a distributi®X,Y) on pairs In other words, algorithmic dependences in a setting with

of binary words that is supported by thedifferent pairs i.i.d. sampling can arise from statistical dependencedianm
(c1,d1), ..., (ce,dg) with algorithmic dependences between probability distrimgio

(¢j,d;) € {0,1}" x {0,1}". B. Markov condition for algorithmic dependences among in-
dividual objects

Now we state the causal Markov condition for individual ob-
jects as a postulate that links algorithmic mutual depecéegn
with causal structure:

Assume that all these words, d; are jointly algorithmically
independent. If we drawn pairs(xi,y1),- .., (Tm, ym) from
this distribution withm < ¢, then all pairs will be different
with high probability. Hence, the string := x4, ..., z,, will
be algorithmically independent ¢f := y1, ..., . If the joint  pgstylate: algorithmic causal Markov condition

distribution is given, we can useto compresy furtherthan | gt,, . 4 ben strings representing descriptions of obser-
without knowingx (because the occurrence:of = ¢; implies  yations whose causal connections are formalized by a dicect
y; = di). However, first describing’(X, Y') in order to geta acyclic graphG with 21, ..., 2, as nodes. Lepa; be the
better compression of would not be economical due to thegoncatenation of all parents of; and nd; the concatenation
high description complexity oP(X,Y). Despite the statistical of | jts non-descendants except itself. Then

dependencex does not help for better compressing

(3) On the other hand, knowledge af could allow us to
compressy even in the case of a product distribution & As in Definition 4, the appropriate cut-off rate for rejedin
andY. Consider, for instance, the following case. Létand G when I(z; : ndj|paj) > 0 will not be specified here.

Y attain values in the spacf),1}™, i.e., binary words of Note that the order of concatenating strings inmté; and
lengthn. Let P(X) and P(Y) both have point mass on the o .

same string: € {0,1}" and K (c) not negligible & must be P4 S irrelevant for the abov_e statetements becausés
large). ThenI(X;Y) = 0 because the joint distribution isconS|der_ed constant gnd there is thus only a constant Gmkrhe
obviously given byP(X,Y) = P(X)P(Y). After sampling to descnbe an orqlerlng of a set of nodes. The postu_latg is a
from P(X,Y) we observe algorithmic dependences betweé\‘?‘tural mterpreta’qon pf Fhe abstract causal Markov CX!IDTdI

the list of z-values and the list ofj-values because they!n t€rms of algorithmic independences. The only point that
coincide. The algorithmic dependences are thus due to fifgh&ins to be justified is why we condition en} instead of

fact that both variables share the same distribution ant t#4i- I-€-, Why we are given the optimal joint compression of
the description length of the latter is significant. the parent strings. The main reason is that this turns out to

The example (3) is only a very simple instance of a probé{i-eld nice statements on the equivalence of different Marko
bility distribution whose algorithmic information is sigicant. conditions (in analogy to Lemma 1). S'”Se the differences
We now introduce a more sophisticated family of distribntio P€tWeenI(z; : ndj|pa;) and I(z; : nd;|paj) can only be
on {0, 1}" with high complexity (generalizing the above Casépganthmm in the string lengtdswe will not focus on this
that we need several times throughout the paper: issue any further.

Definition 5 (product distlr!buti(.)ns. fro_m strings): 3this is becausds (x|y) — K (z|y*) = O(log |y|), where|y| denotes the
Let Py, P, be two probability distributions 00,1} andc¢ length ofy (see [22])

xj 1L nd; |pa.’;- ) (8)



If we apply Postulate 8 to a trivial graph consisting of two Il. Local Markov condition: Every node is independent of

disconnected nodes, we obtain the following statement. its non-descendants, given the optimal compression of its
Lemma 5 (no algorithmic mutual inf. without causation): parents:

If the mutual informatior/ (z : y) between two objects, y is I(z; : ndj|pa}) Lo,

Zlag;tlflcantly greater than zero they have some kind of comm(m. Global Markov condition:
Here, common past between two objects means that one I(S:T|R") £o

has causally influenced the other or there is a third one
influencing both. The statistical version of this princigeart

of Reichenbach’s principle of the common cause [32] statin A g ! g
that statistical dependences between random varfaiilesnd  different versions and just refer to “the algorithmic Mavko
Y are always due to at least one of the following three typ&8ndition”. The intuitive meaning of eq. (9) is that the stest

of causal links: (L)X is a cause of, or (2) vice versa, or (3) d_escription of_a_II strings generated by the_causal mod_el is
there is a common causé. For objects, the term “common91Ven by describing how to generate every string from itectir

past” includes all three types of causal relations. For st C2USes. A similar kind of “modularity” of descriptions wélso

« andy, for instance, it reads: similarities of y indicate that OCCcur later in a different context when we consider desanpt

one author has been influenced by the other or that both h&fnPlexity of joint probability distributions. _
been influenced by a third one. For the proof of Theorem 3 we will need a Lemma that is

Before we construct a model of causality that makes an analog of the observation that for any two random vargable
possible to prove the causal Markov condition we want Y’ the statistical mutual information satisfie§f (.X); V') <

discuss some examples. If one discovers significant sitigar (X;_Y)_for every measurab_le functiog. The glgorlthm_lc
in the genome of two sorts of animals one will try toversion is to consider two strings y and one string: that is

explain the similarities by relatedness in the sense ofutianl. derived fromz* by a S'_”?p'e rule. L .

Usually, one would, for instance, assume such a common-émma 6 (mon0t0n|f:|ty of algorithmic mfgrmatlon).

history if one has identifietbng substrings that both animals L€t #; ¢,z be three strings such thaf(z|z*) = 0. Then

have in common. However, the following scenario shows two N .

observations that superficially look similar, but neveltkse we I(z:y) < I(z:y).

cannot infer a common past since their algorithmic compyexi This lemma is a special case of Theorem 1.7 in [23]. We

is low (implying that the algorithmic mutual information iswill also need the following result:

low, t00). Lemma 7 (monotonicity of conditional information):
Assume two persons are instructed to write down a binaret x, y, z be three strings. Then

string of length1000 and both decide to write the same string +

x = 1100100100001111110.... It seems straightforward to K(z|z") = K(z|(z,y)") .

assume that the persons have communicated and agreed upon + +

this choice. However, after observing thats just the binary  Note that K(z|z") > K(z[z",y) and K(z[z") >

representation ofr, one can easily imagine that it was just® (2/2", ") is obvious but Lemma 7 is non-trivial because

a coincidence that both subjects wrote the same sequerig.Star operation igintly applied toz andy.

Inbothe_r wolr]ds, rt]he simila]rcities are lno I(l)ng_le_zrr]_sigrrw]ificaniaf Proof of Lemma 7: Clearly the string can be derived from
observing that they stem fromsmplerule. This shows that x,y by a program of lengti®)(1). Lemma 6 therefore implies
the lengthof the pattern that is common to both observations,

is not a reasonable criterion on whether the similaritiess ar I(z: 2) g I(z:2,y),
significant. .

To understand the algorithmic causal Markov conditiofherel(z : z,y) is shorthand forl (= : (x,y)). Hence
we will study its implications as well as its justificatiom | .
analogy to Lemma 1 we have K(z) = K(2]2%)

Theorem 3 (equiv. of algorithmic Markov conditions):
Given the stringsey, ..., x, and a directed acyclic graph.
Then the following conditions are equivalent:

if R d-separate$ andT'.
Below we will therefore no longer distinguish between the

I(z:x) % I(z: z,y)
K(z) — K(z|(z,y)*).

Then we obtain the statement by subtractiifz) and invert-
ing the sign.Cd

[+ I+

I. Recursive form: the joint complexity is given by the ) ) _ _
sum of complexities of each node, given the optimal The following lemma will only be used in Subsection I1I-C.

compression of its parents: We state it here because it is closely related to the oneseabov
Lemma 8 (generalized data processing inequality):
n For any three strings, vy, z
+ * Y J 1
K(xl,...,xn):ZK(xj|paj) 9) N
j=1 I(x:y|z*) =0
implies

4The original formulation considers actually dependencetsvéen events, +
i.e., binary variables. Ha:y)<I(z:z).



The name “data processing inequality” is justified becau
the assumptionr L y|2* may arise from the typical data
processing scenario wheteis obtained frome via z.

Proof of Lemma 8: Using Lemma 7 we have

K(ly) > K@l(z9)") (10)
 K(zlz,y,K(y,2))
£ K(zlz,y, K(2) + K(y]2"))
E K(z|z,y, K(2), K(y|z"))
=

K(z|",y, K(ylz")),

where the second inequality holds becad$g) + K (y|z*)
can obviously be computed from the p&i (z), K (y|z*)) by
an O(1) program. The last equality uses, again, the equi
lence ofz* and(z, K(z)). Hence we obtain:

I:y) £ K(z)-K(ly")
L K(alz") + I(z:2) - K(aly")
< K(x2") +Ia: 2) — K(aly, K(y="), =)
s

Iw:2)+I(z:y|z*) T I(x:2).

The first step is by Definition 2, the second one uses Lemma‘z;

the third step is a direct application of ineq. (10), the fbur

one is due to Definition 3, and the last step is by assumption.

O

Proof of Theorem 3: k- llI: Define a probability mass func-
tion P on ({0,1}*)™ (which formalizes then-fold cartesian
product of the set of string80, 1}*), as follows. Set

1

Zj

9—K(z;5]paj) ’

P(z;|pay) (11)

where z; is a normalization factor. In this context, it is

VA
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semarkably, we can also determine Kolmogorov complexities
of subsetsf {z1,...,z,} from the corresponding marginal
probabilities. We start by proving

K(z1,...,20-1) = —log, Z 9~ K@in)

Tn

(14)

Note that Kraft's inequality (see [22], Example 3.3.1) imagl
ZQ*K(IM) <1,

for any two stringse andy. On the other hand,

ZQ*K(IW) > 9= K(zoly)
where z( is the shortest string allowed in the prefix code.

S oKl X,

where = denotes equality up to a positive multiplicative
constant.
Eq. (15) entails

lence
(15)

2_K($1;~~~7In) Z 2_K($1;~~~7z7171)_K($nI(Ilanwznfl)*)

Tn

X Tn—1)

.....

Using eq. (13) we obtain eq. (14):

K(Ilv o e 7xn71) = - 10g2 Z 2—K(117~~~,1n)
; _logQZP('rlv"'aIn)
= —lOgQP(zcl,...,:zrn,l).

important that the symbopa; on the left hand side refers Since thg same argument holds for marginalizing over any
to conditioning on thek-tuple of stringsz; that are parents Other variablez; we conclude that

of z; (in contrast to conditional complexities where we can
interpret K (.|pa}) equally well as conditioning oonestring
given by theconcatenatiorof all thosex;).

K(xjw"'ijk) == _IOgQP(le""7xjk)7 (16)

for every subset of strings of sizewith & < n. This follows
by induction ovem — k.

Now we can use the relation between marginal probabil-
ities and Kolmogorov complexities to show that conditional
complexities are also given by the correspondiogditional

K (xj]pat) = —log, P(xj|paj) .

Then we set

P(zy,...,2n) == Hp(xj Ipa;) (12) probabilities, i.e., for any two subsets 7' C {z1,...,z,}
j=1 we have
N
i.e., P satisfies the factorization property with respectGolt K(S|T") = — logy P(S|T).
is easy to see thak'(z1,...,z,) can be determined fror® Without loss of generality, sef := {z1,...,2;} andT :=
using eq. (2): {xj41,..., 21} for j < k < n. Using egs. (6) and (16) we
K(x1,...,20) + Z K (zj|paj) (13) 5Note that eq. (14) also follows easily from
j=1
! S 27 K@ 27K for K(f) = 0(1),

|1+

n
- Z log, P(x;|pa;) « With f(z)=y
j=1

(shown in [33], eq. (11f)) by setting(2) := z1, ..., zn—1 if z = 21, ...
and undefined it is not of this form.

s Zn

—logy P(x1,...,2n).



get

K($1,...,,’Ej|(l‘j+1,...,:L'k)*)

; K(wl,...,xk) —K(.’L'j_‘_l,...,xk)
£ _log, (P(xl, coosxk)/P(xisa, .. ,xk))

[+

—logy P(x1,...,2zj|Tjt1,. .., %) -

Let S, T, R be three subsets dfxy,...,z,} such thatR d-
separate$ andT. ThenS L T |R with respect toP because
P satisfies the recursion (12) (see Lemmé& Hence

K(S,T|R") —log, P(S,T|R)
—log P(S|R) — log, P(T|R)

K(S|R") + K(S|R").

I+ 1+ I+

This proves algorithmic independence ®fand T', given R*
and thus 1= Il

To show that Ill=- Il it suffices to recall thahd; andz; are
d-separated bya;. Now we show Il= | in strong analogy
to the proof for the statistical version of this statemen(3h
Consider first a terminal node aF. Assume, without loss
of generality, that it isz,. Hence all stringsey,...,z,-1
are non-descendants of,. We thus have(nd,,pa,) =

(z1,...,2,—1) Where= means that both strings coincide up
to a permutation (on one side) and removing those strings t}11

occur twice (on the other side). Due to eq. (6) we have

[+

K(xy,...,2n) = K(z1,...,2n-1) + K(zp|(ndy, pas)”) .

(17)
Using, again, the equivalence of* = (w, K(w)) for any
string w we have
K (n|(ndn, pan)*)
K(xn|ndy, pan, K(nd,,, pay))
K(
K(

Tn|ndn, pay,, K (ndn|pay,))

I+ IV+ [+ [+

Tnlpay,) . (18)

The second step follows from K(nd,,pay) s
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To show that the algorithmic Markov condition can be derived
from an algorithmic version of the functional model in Pastu
late 3 we introduce the following model of causal mechanisms

Postulate: algorithmic model of causality

Let G be a DAG formalizing the causal structure among the
stringsz1, ..., x,. Then every:; is computed by a program
¢; with lengthO(1) from its parentspa; and an additional
input n;. We write formally

xj = qj(paj,n;), (21)

meaning that the Turing machine computgsfrom the input
paj,n; using the additional program; and halts. The inputs
n; are jointly independent in the sense

U _IJ_nl,...,nj,l,anrl,...,nn.

We could also have assumed that is a function f; of
all its parents, but our model is more general since the map
defined by the input-output behavior @f need not be a total
function [22], i.e., the Turing machine simulating the pres
would not necessarily halt call inputspa;,n;.
The idea to represent causal mechanisms by programs writ-
n for some universal Turing machine is basically in theispi
of various interpretations of the Church-Turing thesis.eOn
formulation, given by Deutsch [34], states that every pssce
taking place in the real world can be simulated by a Turing
machine. Here we assume that the way different systems
influence each other by physical signals can be simulated by
computation processes that exchange messages of bitsstring

Note that mathematics also allows us to construct strings
that are linked to each other in amcomputablevay. For
instance, letc be an arbitrary binary string ang be defined
by y := K(z). However, it is hard to believe that a real
causal mechanism could create such kind of relations betwee
objects given that one believes that real processes calyalwa
be simulated by algorithms. These remarks are intended to
give sufficient motivation for our model.

The algorithmic model of causality implies the algorithmic
causal Markov condition:

K(pan) + K(ndn|pay,). The inequality holds because Theorem 4 (algorithmic model implies Markov):
ndy, pan, K(pan) + K(nd,|pay) can be computed from et . .. be generated by the model in eq. (21). Then

ndy, pal, K(nd,|pa’) via a program of lengthO(1). The
last step follows directly from the assumptiop L nd,, |pa.
Combining ineq. (18) with Lemma 7 yields
K (20| (ndn, pan)*) = K (zn|pas,) (19)
Combining egs. (19) and (17) we obtain
K(z1,...,a0) = K(1,..., 20 1) + K(za|pal). (20)

Then statement | follows by induction over [

6Since P is, by construction, a discrete probability function, thensity
with respect to a product measure is directly given by thégiodity mass
function itself.

they satisfy the algorithmic Markov condition with respéat

G.

Proof : First we observe that the model class defined by
our algorithmic model of causality becomes larger if we
assume that every node is computed frgm;, n;)* instead

"Note, however, that sending quantum systems between thes nomlild
transmit a kind of information (“quantum information” [35that cannot
be phrased in terms of bits. It is known that this enables detely
new communication scenarios, e.g. quantum cryptographg. r€levance of
quantum information transfer for causal inference is natfyy understood.

It has, for instance, been shown that the violation of Belfiequality in
quantum theory is also relevant for causal inference [36fis s because
some causal inference rules between classical variabéek lown when the
latent factors are represented fuantumstates rather than being classical
variables.
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of (paj,n;). While (21) seems more natural from the perwhich implies eq. (24). Together with (23), this yields
spective of interpretation (why should nature have access t —

the shortest compressioof (pa;,n;) ?), it is remarkable from n; L nd;,

the mathematical point of view that the proof below only Us€§f,e 0 Lemma 6. Hence,

the extended set of strings
the weaker assumption

T1,...,Tn,N1,...,Nn, Satisfies the local Markov condition
;= q¢i((paj, nj)*), (22) With respect ta. By Theorem 3, the extended set of nodes is
also globally Markovian w.r.t.G. The parentga,; d-separate
for someO(1)-programg;. z; andnd; in G (here the parentsa; are still defined with

The arguments below are similar to the proof Ofespect ta7). This implies the local Markov condition fag.
Lemma 2: ExtendG to a causal structur&’ with nodes [

T1,...,Tp,N1,...,N,. 10 See that the extended set of nodes
satisfy the local Markov condition w.r.tz, observe first that It is trivial to construct examples where the causal Markov
U condition is violated if the programs; are mutually depen-
K (zj|paj) =0, dent (for instance, the trivial graph with two nodes z» and
wherepa; := (pa;, n;) denotes the parents of with respect no edge would satisfy(z, : z3) > 0 if the programsn,, ny

to O, Thls follows from (22). Hence, computingxy, zo from an empty input are dependent).
The model given by equation (21) can also be interpreted

x; L ndj lpaj , as follows. Eachn; is the description of the mechanism that
generates;; from its parents. This perspective makes apparent
that themechanismthat generate causal relations are assumed
to be independent. This is essential for the general ptplogo
ne L md of this paper. To see that such a mutual independence of
. / 7 mechanisms is a reasonable assumption we recall that the
if nd; denotes the non-descendantssof Introducing the causal graph is meant to formalizdl relevant causal links
notation between the objects. If we observe, for instance, that tvaeso
are generated from their parents by the same complex rule we

if ﬁ?lj denotes the non-descendantsigfwith respect toG.
Since everyn; is parentless, it remains to show that

N = M =1 g1y e T postulate another causal link between the nodes that esplai
we have assumed the similarity of mechanisms.
n; 1 n—j. (23)
We now show that the non-descendants:pcan be obtained C- Relation between the postulates
from n* ; via anO(1)-program, i.e., In our presentation the algorithmic Markov condition plays
- n the role of the fundamental postulate. It provides the biasis
K(ndjln” ;) =0. (24)  all causal conclusions that we discuss later. The algoithm
Let model of causality has only been described to provide an
e additional justification for the former. Rather than poatirg
Thys ooy Thy = Nd,

the (algorithmic) causal Markov condition one could also
denote the non-descendantsrgf apart fromn_;, written in  develop the theory as follows. One states the Causal Pkincip

a causal order. Then eveny,, fori=1,...,k, is computed in Lemma 5 apostulateand additionally postulates that every
from its parents aneky, via the programy,. Hence, causal mechanism is Turing computable in the sense that ever
o+ effect is computed from its causes; by some program;.
K (zr;|(par;, i )") = 0. Recall that the strings; then describe the causal mechanisms
Due to Lemma 7, this implies — if these mechanisms have been designed independently, the
jointindependence of, ..., n, then follows from the Causal
K (k| (hy - o Ty mi)) = 0. (25) Principle.
All these postulates referring to algorithmic information
Hence, . . . o .
imply, in an appropriate limit, the corresponding postedafor
K (2, |n" ;) ; K (g, g |n®,) statistical c_ausal inference: Assume that_ all strimgsindn;
N represent lists of; or N; values, respectively, after repeated
= K |(@ryy - Thogy s ,)") i.i.d. sampling. Assume, moreover, that the Kolmogorov eom
+ K (Thyy ey They_, |n7j) plexity of the joint distribution ofX4,..., X,,, N1,..., N, is
. negligible. Then the algorithmic mutual information redac
< ZK(%W_].) i to the statistical mutual information (consider conditbn
—1 ' versions of Theorems 1 and 2) and the statistical versions of

The first inequality is obvious, the equality uses egs. (2f) ath€ Postulates are implied by the algorithmic ones .
(6). By induction overi, we thus obtain In particular, the algorithmic Markov condition then redsc

to the statistical causal Markov condition. However, thexfer
K(zy,|n” ;) o, is more fundamental than the latter since it is also applécab
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to the case where the i.i.d. assumption is violated or thelll. NOVEL STATISTICAL INFERENCE RULES FROM THE
complexity of the distribution becomes significant. ALGORITHMIC MARKOV CONDITION

A. Algorithmic independence of Markov kernels

To describe the implications of the algorithmic Markov
condition for statistical causal inference, we considedmm

This subsection explains why it is sensible to define ayariablesX andY where X causally influenced”. We can
gorithmic dependence and the existence or non-existencehifik of P(X) as describing a sourcethat generates-values
causal linksrelative to some background information. To this2nd sends them to a “machind’ that generateg-values
end, we consider genetic sequengess, of two persons that according toP(Y'|X). Assume we observe that
are nqt r(.ellatives..We.certainIy find high similarity thatdsa I(P(X): P(Y]|X)) > 0.
to a significant violation of/(s; : s2) = 0 due to the fact
that both genes are taken from humans. However, given thieen we conclude that there must be a causal link betueen
background informations; is a human genetic sequence;, and M that goes beyond transferringvalues fromS to M.
can be further compressed. The same applies.thet h be a This is becausé(X) and P(Y'|X) are inherent properties of
code that is particularly adapted to the human genome in theand M, respectively, which do not depend on the current
sense that it minimizes the expected complexity of a rangonMalue ofz that has been sent. Hence there must be a causal

D. Relative causality

chosen human genome, i.&.minimizes link that explains the similarities in théesignof S and M.
Here we have assumed that we know téat— Y is the
1 Z K(s|h) correct causal structure on tiséatistical level Then we have
N <= ’ to accept that a further causal link on the higher level of the

machine desigis present.

where s runs over the genomes of all humans aNdis the If the causal structure on the statistical level is unknowe,
total size of the human population. Then it would make sens®uld prefer causal hypotheses that explain the data withou
to consider(s; : s2|h) > 0 as a hint for a relation that needing a causal connection on the higher level provided
goes beyond the fact that both persons are human. In cgontrisit the hypotheses are consistent with the statisticakiWar
for the unconditional mutual information we expebts; : condition. Given this principle, we thus prefer causal tis@
s2) > K(h). We will therefore infer some causal relatiorfor which the Markov kernel®(X,;|PA;) become algorithmi-
(here: common ancestors in the evolution) using the Causally independent. This is equivalent to saying that thetslso
Principle in Lemma 5 (cf. [29]). description of P(X4,..., X, ) is given by concatenating the

The common properties between different and unrelaté@scriptions of the Markov kernels, a postulate that haselly
individuals of the same species can be screened off by phgen formulated by Lemeire and Dirkx [37] (see also [38]) in
viding the relevant background information. Given thissalu @ similar form:
background, we can detect further similarities in the gen
by the conditional algorithmic mutual information and tak . . ) .
thyem as an indicatoEJ for an additional causal relation th causal hypothes_lxg (ie., a DA(.;) IS on!y gccgptable if
goes beyond the common evolutionary background. For tlji(he shortest quCFIptIOH of the joint dgn;@ is given by
reason, every discussion on whether there exists a cankal conca?enanon of the shortest description of the Markov
between two objects (or individuals) requires a specificati ernels, i.e.

of the background information. In this sense, causality is a K(P(X1,...,X,) = ZK(P(XJ|PA7))' (26)
relative concept. F '

Onfe mﬁly ask_wlhetlher SfJCh "’} rﬁlatlvny 0;" caus.alle_l|3 alsif)no such causal graph exists, we reject every possible DAG
true for the statistical version of the causality principle., ,,q assume that there is a causal relation of a different,type

Reichenbach’s principle of the common cause. In the statl:?_-g” a latent common cause, selection bias, or a cyclicalaus
tical version of the link between causality and dEpendem‘s‘?ructure

the relevance of the background information is less obvious

because it is evident that statistical methods are alwapeab  Here we have implicitly assumed th&(X,...,X,,) is

to agiven statistical sampldf we, for instance, ask whethercomputable is the sense that it as has computable function

there is a causal relation between the height and the incomgr,, ..., x,) as density. We will keep this assumption unless

of a person without specifying whether we refer to people @fis explicitly stated. The sum on the right hand side of @6)(

a certain age, we observe the same relativity with respectvigll be called thetotal complexityof the causal modek. Note

additionally specifying the “background information”, igh  that the postulate of algorithmic independence of conditie

is here given by referring to a specific sample. implies that we have to reject every causal hypothesis for
In the following sections we will assume that the relevanthich the total complexity is not minimal because a model

background information has been specified and it has besith shorter total complexity already provides a shorter de

clarified how to translate the relevant aspects of a realcbbjscription of the joint distribution. Inferring causal ditens

into a binary string such that we can identify every objed¢hwi by minimizing this expression (or actually a computable

its binary description. modification) could also be interpreted in a Bayesian wayaf w

S . .
%ostulate: algorithmic independence of conditionals



14

considerK (P(X;|PA;)) as the negative log likelihood for theconstant because its description complexity does not depen
prior probability for having the conditiondP(X;|PA;) (after on the parameters.

appropriate normalization). However, postulating eq.) (24s We thus get

implications that go beyond known Bayesian approaches to " )
causal discovery because one can get hints on the incomplete I(P(Y): P(X]Y)) = K(u) + K(X0o7).

ness of the class of models under consideration (in additigRerefore we reject the causal hypotheEis— X because
to providing rules for giving preferencwithin the class). eq. (26) is violated. The interesting point is that we neetl no
If eq. (26) is violated for all DAGs, none of them can bgygk at the alternative hypothesi§ — Y. In other words,
accepted. One possible explanation is that the set of Vasale o not reject” — X only because the converse direction
is not causally sufficient because there is a latent commgRgs to simpler expressions. We can reject it alone on the
cause. basis of observing algorithmic dependences betwB¢H )
Lemeire and Dirkx [37] already sketched a relation betweefhd P(X|v) making the causal model suspicious.
causal faithfulness and postulating (26) saying basidy,  The following thought experiment shows that — X
under appropriate conditions, the algorithmic indepecdest \yould become plausible if we “detune” the sigmdii X |Y")
conditionals implies the causal faithfulness principleei& by changing slope or offset, i.e., choosiAgji,5 indepen-
though a detailed specification of the conditions has befn Igently of A and », ando. Then P(Y) and P(X|Y) are by

to future work, the idea is as follows: Unless the conditlenagefinition algorithmically independent and therefore wéadh
are very specific (e.g., deterministic relations betwearses 3 more complex joint distribution:

and effects), violations of faithfulness require mutuajuat - iy
ments of conditionals in the sense that they jointly satisflf (P(X,Y)) = K(A\)+K (u)+K(o)+K(\/67)+K (/7).
equations that would not hold for generic choices. TheEEforThe fact that the set of mixtures of two Gaussians does not

they are algorithmically dependent. Now we want to show thﬁ&ve five free parameters already shows fR@k, Y') must be

(26) implies causal inference rules that go beyond the knowny, e complex distribution than the one above. Fig. 4 shows

ones. _ _ an example of a joint distribution obtained for the “detuhed
To this end, we focus again on the example in SubseGs,ation.
tion 1-B with a blnary_vanabIeX .and a cpntlnuous varl-  as already noted by [37], the independence of mechanisms
able Y. The hypotEeS|SX — Y is not rejected becausejs rg|ated to Pearl’s thoughts on the stability of causakesta
I(P(X) : P(Y|X)) = 0. For the equally weighted mixture of ments: the causal mechanisR(X;|PA;) does not change
two Gaussians this already follofvrom K (P(X)) £ 0. On if one changes the input distributiaR(PA;) by influencing
the other handy” — X violates (26). Elementary calculationsthe variablesP4;. The same conditional can therefore occur,
show that the conditionaP(X|Y") is given by the sigmoid under different background conditions, with different dmp
function distributions.
1 Ay — 1) An equivalent of eq. (26) naturally occurs in the probaypilit
P(X =1Jy) = 5(1 + tanh T) : (27) free version of the causal Markov condition. To explain
~this, assume we are given two stringsand y of length
We observe that the same parameters, n. that occur in , (describing two real-world observations) and notice that

P(Y) (see eq. (4), also occur i?(X|Y") and bothP(Y) y — vy Now we consider two alternative scenarios:
and P(X|Y) are complex, see eq. (27). This already shows

that the two Markov kernels are algorithmically depend@at. (1) Assume that every paifz;,y;) of digits G = 1,...,n)
be more explicit, we observe that \, ando are required to has been independently drawn from the same joint distobuti

specify P(Y). To describeP(X|Y), we need)/o? and j. P(X,Y) of thebinary random variables andY. Hence, X
Hence we have andY both take values iq0, 1}

(I Let x andy be single instances of string-valued random

i
K(P(Y)) : K(p A, 0) variablesX andY’, i.e., bothX andY take values i0,1}".
j K(n) +[§()\) + K(o) The difference between (I) and (ll) is crucial for statis-
K(P(X]Y)) = K(p,A/o”) tical causal inference: In case (I), statistical indepewee
L K+ KM\o?) is rejelcflecli( with high conf;]denc_e provingdthe e>;istenc§$qf a
+ + causal link. In contrast, there is no evidence for staastic
K(P(X,Y)) = K(P(Y), P(X]Y))=K(u A 0) dependence in case (Il) since the underlying joint distiiou
L K(pw+KWN+K(o), on {0,1}™ x {0,1}" could, for instance, be the point mass on

] o the pair(x,y), which is a product distribution, i.e.,
where we have assumed that the strings\,c are jointly
independent. Note that the information tHatY') is a mixture P(X,Y)=P(Y)P(X).
of two Gaussians and that(X|Y) is a sigmoid counts as aHence, statistical causal inference would not infer a dausa
8for the more general casB(X = 1) with K (p) > 0, this also connection in case (ll).
follows if we assume thap is algorithmically independent of the parameters Algorl_thm_lc causal inference, on the Othe.r hand, mfers a
that specifyP(Y|X). causal link in both cases because the equality y requires
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P(y) P(-1,y) P(1y)

Fig. 4. Left: a source generates the bimodal distributi®(). A machine generates-values according to a condition&l(X|Y") given
by the sigmoid (27). If the slope and the position paramedéthe sigmoid are not correctly adjusted to the distance,pibsition, and the
width of the two Gaussian modes, the generated joint digtah no longer consists of two Gaussians (right).

an explanation. The relevance of switching between (I) arfactor two.

(I then consists merely in shifting the causal connection Lemma 9 (maximal complexity quotient):

another level: In the i.i.d setting, eveny, must be causally For every joint distributionP(X,Y’) we have

linked toy;. In case (ll), there must be a connection between n

the two mechanismshat have generated the entire stringsK(P(Y)) + K(P(X[Y)) < 2(K(P(X)) + K(P(YIX))) .

because_T(P(X) $ PY|X) = I(P(X) : P(Y)) >>.O' Thls. Proof: Since marginals and conditionals both can be condpute

can, for instance, be due to the fact that two machines emitti

the same string were designed by the same engineer. A @btaflré)m P(X.Y) we have

discussion of the relevance of translating the i.i.d. aggion

into the setting of algorithmic causal inference will be egiv

in Subsection IlI-B. Then the statement follows becau’gX, Y') can be computed
from P(X) and P(Y|X). O

K(P(Y)) + K(P(X|Y)) < 2K (P(X,Y)).

Examples with large probability spaces To construct examples where the bound in Lemma 9 is attained

In the preceding subsection we have ignored a seriows firstintroduce a method to construct conditionals witti-we
problem with defining the Kolmogorov complexity of (con-defined complexity:
ditional) probability distributions that even occurs inifin  Definition 6 (Conditionals and joint distributions from Etgs):
probability spaces. First of all the “true” probabilitiesayn
not be computable. For instance, a coin may produce “hede®t Mo, M1 be two stochastic matrices that specify transition
with probability p where p is someuncomputablenumber, probabilities from{0, 1} to {0, 1}. Then
i.e., K(p) = oco. And even if it were some computable value o
p with large K (p) it is not clear whether one should call the Me:= Mo, @ M, ®-- @ Me,
probability distribution(p, 1 — p) “complex” becauseK (p) defines transition probabilities frof0, 1}™ to {0, 1}".
is high and “simple” if we have, for instange = 1/7. A We also introduce the same construction for double indices:
more reasonable notion of complexity can be obtained bt Moo, Mo1, My, M1 be stochastic matrices describing
describing the probabilities only up to a certain accuracy transition probabilities fror0, 1} to {0, 1}. Letc,d € {0,1}"
If ¢ is not too small we obtain small complexity values for th&e two strings. Then
distribution of a binary variable, and also low complexity f
a distribution on a larger set that éisclose to the values of
some simple analytical expression like a Gaussian disgtobu defines a transition matrix frord0,1}" to {0,1}". If the
There will still remain some unease about the concept ofatricesM; or M;; denote joint distributions o0, 1} x
Kolmogorov complexity of “the true distribution”. We will {0,1} the objectsM. and M., define joint distributions on
subsequently develop a formalism that avoids this concept, 1}™ x {0,1}"™ in a canonical way.
However, Kolmogorov complexity of distributions is a udefu Let X,Y be variables whose values are binary strings of
idea to start with since it provides an intuitive understagd length n. To define P(X,Y) we first define distributions
of the roots of the asymmetries between cause and effedts tha(U), P, (U) of a binary random variabld/. Moreover,
we will describe in Subsection IlI-B. we introduce stochastic matrice), A; describing transition
Below, we will describe a thought experiment with twgrobabilities Py(V|U) and P, (V|U), respectively, wherd
random variables(, Y linked by the causal structut® — Y is also binary. Then a stringe {0,1}" determines, together
where the total complexities of the causal mod&s— Y  with P, andP; given above, a distributioR(X) := P, (using
andY — X both are well-defined and, in the generic cas®efinition 5) that has well-defined Kolmogorov complexity
different. First we will show that they can at most differ by & (c) if the description complexity ofy and P, is neglected.

Mc,d = Mcl,dl ® MCQ,dz ® T ® MCn,dn



16

Furthermore, for an arbitrary random stridge {0,1}", we Case 4:P, # P, and Ay # A;. Every formal dependence of
set P(Y|X) := Ay, as in Definition 6, where we have usedhe conditionals and marginals enandd in table (28) is a
the canonical identification between stochastic matrices aproper dependence. Hence we obtain

conditional probabilities. The joint distributio®(X,Y") is

then determined by andd. K(P(X))+K((P(Y|X)) = n+n = 2n
To investigate the description length B{Y") and P(X|Y") K(P(Y))+ K(P(X|Y)) £ 2n+2n = 4n
we introduce the following notions. L&?;; be short hand for
the joint distribution ofU, V' defined by The general principle of the above example is very simple.

Given thatP(X) is taken from a model class that consists of
N different elements and?(Y'| X) is taken from a class with

Let Q;; denote the corresponding marginal distributiontof different elements. Then the class of possiBl&”) and the

P(U, V) := BU)F;(VIU).

and B;; short hand for the conditional class of possible?(X|Y") both can containV - M elements.
' If the simplicity of a model is quantified in terms of the size
P;(U|V) = P (U, V) . of the class it is taken from (within a hierarchy of more and
Pi; (V) more complex models), the statement tRét") and P(X|Y")

Using these notations and the ones in Definition 6, we obtgih. typically complex is just based on this simple counting

argument.
P(X) = P, (28)

PY|X) = Ay Detecting common causes via dependent Markov kernels
P(X,Y) = Reca The following model shows that latent common causes
PY) = Qcq can yield joint distributions whose Kolmogorov complexity

P(X|Y) = B.u is smaller thankK (P(X)) + K(P(Y|X)) and K(P(Y)) +

K(X|Y)).LetX,Y, Z have values i{0, 1}" and letP(Z7) :=
It is noteworthy thatP(Y) and P(X|Y) are labeled by d. be the point mass on some random string {0, 1}". Let
both strings whileP(X) and P(Y'|X) are described by only P(X|Z) and P(Y'|Z) both be given by the stochastic matrix
one string each. This already suggests that the latter are md ® A®---® A. Let Py # Py be the probability vectors given
complex in the generic case. by the columns ofd. Then
(PO ) o K (POLY ) for e casetld) & K@) £ e PIX) = P(Y) = P..
¢)=K(d)=nand
I(c: d) £ 0. We assume thaP, and A; are computable and with P, as in Definition 5. Sincé’(Z) is supported by the sin-
their complexity is counted a3(1) because it does not dependjleton set{c}, the hidden common causgdoes not generate
onn. Nevertheless, we assume tliatand A; are “generic” in any statistical dependence and we obt&iOX|Y) = P(X)
the following sense: All marginalg;; and conditionalsB;; andP(Y|X) = P(Y). Thus
are different wheneveP, # P, and Ay # A;. If we impose N
one of the conditions®, = P, and Ay = A; or both, we K(P(X))+ K(P(Y[X)) = K(PX[Y))+K(P(Y))
assume that only those margindls; and conditionalsB;; s K(P(X))+ K(P(Y)) Lo,
coincide for which the equality follows from the conditions
imposed. Consider the following cases: On the other hand, we have

Case 1:P = P, Ay = A;. Then all the complexities vanish K (P(X|2)) + K(P(Y|Z)) + K(P(Z)) L0+0+n=n.
because the joint distribution does not depend on the stri
c andd.

+
Case 2:Py # P, Ay = A,. Then the digits of: are relevant, K(P(X|2))+ K(P(Y|Z)) + K(P(Z)) = K(P(X,Y)),

_bUt the digits ofd are not. Those marginals and condltlonalvcve thus have obtained a hint that the latent model is the more
in table (28) that formally depend anandd, as well as those appropriate causal hypothesis

that depend om, have complexityn. Those depending od Note that this is an example where both— ¥ andY —
have complexity. X can be rejected without checking the alternative hyposhesi
Given that we have observed

r@y observing that there is a third variable such that

K(P(X)) + K(P(Y]X))
K(P(Y)) + K(P(X[Y))

n+0 = n
n+n = 2n . I(P(X): P(X]Y))>0 and I(PY):P(X]Y))>0

[+ [+

Case 3: P, = P, Ay # A,. Only the dependence o we know that both DAGs are wrong even though we may not
contributes to the complexity. This implies have observed that the causal structure

K(P(X)) + K(P(Y]X)) X =

K(P(Y)) + K(P(X[|Y))

O+n = n
n+n = 2n . does satisfy the independence condition.

I+ I+
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Analysis of the required sample size

The following arguments show that the above algorithmic
dependences between the Markov kernels corresponding to th

wrong causal hypotheses can already be observed for mederat
sample size. Readers who are not interested in techniclslet
may skip the remaining part of the subsection.
Consider first the sampling required to estimatey draw-
ing i.i.d. from P, as in Definition 5. By counting the number
of symbols1 that occur at positioy we can guess whether °
¢; is 0 or 1 by choosing the distribution for which the relative
frequency is closer to the corresponding probability. Tarmb
the error probabilities from above set

j=[Po(1) = Py(1)].
Fig. 5. Causal structure of the coin toss. The statistical properti
Then the probability; that the relative frequency deviates byf the coinC define the common cause that links the results of the

more thanyu/2 decreases exponentially in the numberof ~COIn t0SS.

copies, i.e.g < e #™® where« is an appropriate constant.

from below by (1 —e™#™)". We want to increasen such (1) it does not make sense to consider algorithmic mutual
that the error probability tends to zero. To this end, choose jhformation among binary strings of length (2) Our theory

such thate—#™* < 1/n?, i.e.,m > Inn*/(ua). Hence developed so far (Theorems 3 and 4) considered the number
n 1\n of strings (which ism + 1 here) as constant and thus even
(1 - e_uma) 2 (1 - ﬁ) —1. the complexity ofz1, ..., x,, is considered a®(1). To solve
this problem, we define a new structure with three nodes as
Given the information that the probability distributidn(X') fglows. For some arbitrarye < m setx' := a1,..., 75
factorizes with respect to the digits, the sample size requi 3nq x2 — Thi1,- . 2m. ThenC is the common cause of
to estimate it (and determine the striay thus grows only 1 z4d x2 and I(x';x?|C) = 0 because every similarity
logarithmically inn. betweenx' andx? is due to their common source (note that

In the same way, one shows that the sample size neeggd information that the stringg’ have been obtained by
to distinguish between different conditiona®Y'|X) = Aq  combiningk andn — k results, respectively, is here implicitly
increases only with the logarithm of provided thatP(X) is  considered as background information in the sense of velati
a strictly positive product distribution of0, 1}". This shows causality in Subsection 11-D). We will later discuss exaespl
that the high description complexity of a distribution caet g where a source generates symbols from a larger probability
relevant even for moderate sample size. space. Then every; is a string and it is important to keep
in mind the sample size such that the string defined by the
concatenation ok, x5, - - -, z,, cen be decomposed into the

original sequence af stringsz; again. This information will
The assumption of independent identically distributed ragjways be considered as background, too.

dom variables is one of the cornerstones of standard statist Of course, we may also consider partitions into more than
reasoning. In this section we show that thelependence two substrings keeping in mind that their number is consider
assumption in a typical statistical sample is often due torpr g5 O(1). When we consider causal relations betwestort
knowledge on causal relations among single objects whisftings we will thus always apply the algorithmic causal
can nicely be represented by a DAG. We will see that th@arkov condition to groups of strings rather than applying
algorithmic causal Markov condition then leads to nonkliv it to the “small objects” itself. The DAG that formalizes the

B. Resolving statistical samples into individual obseitvag

implications. . _ _ _ causal relations between instances or groups of instarfces o
Assume we describe a biased coin tasstimes repeated, statistical sample and the source that determines thetatati
and obtain the binary string,...,z,, as result. This is in the above sense will be called the “resolution of stati

certainly one of the scenarios where the i.i.d. assumpsongamples into individual observations”.

well justified because we do not believe that the coin changesrhe resolution gets more interesting if we consider causal
or that the result of one coin toss influences the other ongslations between two random variabl& and Y. Consider
The only relation between the coin tosses is that they ref@ie following scenario whereX is the cause oft. Let S

to the same coin. We will thus draw a DAG representing th§e a source generatingvaluesz,...,z,, according to a
relevant causal relations for the scenario whergthe coin) fixed probability distributionP(X). Let M be a machine

is the common cause of all; (see fig. 5).

Given the relevant information ofi (i.e. given the proba- 9This is consistent with the following Bayesian interprietat if we define
' a non-trivial prior on the possible values pf the individual observations

bility p for “head”), we have condi_tional algorithmic inde_Pe”'are statistically dependent when marginalizing over therpbut knowingp
dence between the; when applying the Markov condition renders them independent.
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by cgmblnlng the firsk: observations toand the2 remalnlngn—lf observations, we can reject the causal hypothi!’sis» X. This is
to x* and the same foy. We observe that“ d-separatesx ’ .

. . becausd (z: : y2|y7) can be significantly greater than zero provided
2 2 1 2 1 2191

andy”, while y* does not d-separatg’ andx". This asymmetry a;'the substrings missing i, y» at the left or at the right end,
distinguishes causes from effects.

respectively, are sufficiently complex.

that receives these values as inputs and genegat@8ues  For sample size it is likely that y; and y» contain the
Y1, - -, ym according to the conditiona?(Y'|.X). Fig 6 (left) |astn — ¢ and the firstn — ¢ digits of a, respectively, or vice

shows the causal graph fat = 4. N _ versa. This process is depicted in fig. 7 for= 8 and ¢ = 2.
In analogy to the procedure above, we divide the sting-  Since the sample size is only two, the partition of the sample
L1,y T N0 X' = @y, 2y AN X 2= @y, Ts into two halves leads to single observations, ixé. = x; and

and use the same grouping for thevalues. We then draw yi — y; for j =1,2.

the causal graph in fig. 6 (right) showing causal relations |n short-hand notationy! = afi.n—g andy? = ae41..n)-
betweenx!, x?,y!, y2, S, M. Now we assume tha®(X) and e then have

P(Y|X) are not known, i.e., we don't have access to the
relevant properties of and M. Thus we have to considet
and M as “hidden objects” (in analogy to hidden variablegt
in the statistical setting). Therefore we have to apply the
Markov condition to theg)causal structure in such a \?vgy)/l that I(y' : x*|(y*)) ¢ and I y?|(v')) = ¢,

only the observed objects’, x*,y',y* occur. One checks yhich correctly lets us prefer the causal directidn— Y.
easily thatx” d-separatet’ andy” andx' d-separates® This is because these dependences violate the global algo-
andy'. Exhaustive search over all possible triples of subsefghmic Markov condition in Theorem 3 when applied to a
of x',x%,y!,y? shows that these are the only non-trivial dpypothetical graph wherg! and y2 are the outputs of the
separation conditions. We conclude source andk! andx? are the outputs of a machine that has

1. 2] (2% T 2 1y Tvey + receivedy! andy?.
Ix5y716)) =0 and TGy |(x)7) = 0. (29) Even though the condition in eq. (29) does not explicitly

The most remarkable property of eq. (29) is that it is asymméontain the notion of complexities of Markov kernels it is
ric with respect to exchanging the rolesXfandY since, for closely related to the algorithmic independence of Marken k
instance,/ (y'; x2|(y2)*) * ( can be violated. Intuitively, the nels. To explain this, assume we would generate algorithmic
reason is that givel?, the knowledge of? provides better dependences betweehand M by adding an arrows' — M

insights into the properties 0§ and M than knowledge of ©f < M or by adding a common cause. Theh would
x! would do, which can be an advantage when descriging "© longer d-separate! from y2. The possible violation _of _
The following example shows that this asymmetry can even BE- (29) could then be an observable result of the algorghmi
relevant for sample size: = 2 provided that the probability 9€Pendences between the hidden objécend M (and their
space is large. statistical propertie$?(X) and P(Y'|X), respectively).

Let S be a source that always generates the same string
a € {0,1}™. Assume furthermore that is algorithmically C. Conditional density estimation on subsamples
random in the sense théf(a) £ . For sample sizen = 2 Now we develop an inference rule that is even closer to the
we then havex = (21, 22) = (a,a). Let M be a machine that idea of checking algorithmic dependences of Markov kernels
randomly removeg digits either at the beginning or the endhan condition (29), but still avoids the notion Kblmogorov
from its input string of lengtm. By this procedure we obtain complexity of the “true” conditional distributiondy using
a stringy; € {0,1}" with 72 := n — ¢ from z;. finite sample estimates instead. Before we explain the idea

Ixhy?|(x)*) L0 and  I(y'ix?|(x)*) £ o0,
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we mention two simpler approaches for doing so and descrifite On the other hand, if the estimatof3(Y'|X)P(X) and
their potential problems. It would be straightforward teck P (X|Y)P(Y) coincide, the method reduces to choosing the
(26) for the finite sample estimates of the conditionals. Idirection with smaller algorithmic dependences of cowoditi
particular, minimum description length (MDL) approacheals, i.e., the direction that is closer to satisfying (26).
[39] appear promising from the theoretical point of view due It would be interesting to know whether MDL-based causal
to their close relation to Kolmogorov complexity. We repdea inference could also be derived from the algorithmic Markov
the minimum complexity estimator described by Barron angbndition. An interesting conceptual difference betweke t
Cover [40]: Given a string-valued random variabteand a algorithmic Markov condition and MDL is that the former is
samplezy, ..., 2, drawn i.i.d. fromP(X), set in principle able to reject all causal DAGs if all of them \até
m the algorithmic independence of conditionals.

B, = argminQ{K(Q) - Zlog Q(:cj)} , (30) For this paper, we want to infer causal directions only on

j=1 the basis of the algorithmic Markov condition and constarct
ipference rule that uses estimators in a more sophistiveagd

where @ runs over all computable probability densities off"'="'='">= IVIE Hlat U : !
Its justification is directly based on applying the alganiib

the probability space under consideration. If the data is-sa

pled from a computable distribution thdﬁn(X) converges Markov condition to the resolution of samples as introduced
almost surely taP(X) [40]. Let us define a similar estimator" Subsection 111-B. The idea of our strategy is that we do not

P.(Y]X) for the conditional densityP(Y|X). Could we USe the full data set to estimat(Y'|.X). Instead, we apply
reject the causal hypothesi — Y after observing that € estimator to a subsample 6f,y) pairs that no longer
Pm(X) andf’m(Y|X) are mutually dependent? In the contex¢211es 5|gn|f|cant information about the rglat|ve frequien _
of the true probabilities, we have argued thEtX) and of z-values in the.full dgta set. As_ we will see b.elow, this
P(Y|X) represent independent mechanisms. However, for #5&ds to algorithmically independefinite sampleestimators
estimators we do not see a justification for independent® the Markov kemels if the causal hypothesis is correct.
because the relative frequencies of thealues influence the L€t X — Y be the causal structure that generated the data
estimation ofP,, (X ) and P,,,(Y'|X ). Moreoever, the empirical (x,y), with x = @1,....2, andy := yi,...,yn after
frequenciesi(z) and p(y|z) are related by the fact that form-fold |._|.d. sampling fromP_(Xj Y’). The resolution of the
any fixedz, p(z) and all p(y|z) are divisible by the number SamMPple is the causal graph in fig. 8, left.
of occurrences of:. Whether similar dependences also hold According to the model in eq. (21), there are mutually
for the MDL-estimators is unclear. independent programs; computingz; from the description

This problem, however, becomes certainly irrelevant if tHf - Likewise, there are mutually independent programs
sample size is such that the complexities of the estimat&G@MPutingy; from M andz;. Assume we are given a rule how
coincide with the complexities of the true distributionst if {0 9enerate a subsampleof,. .., z,,, from x. Itis important
we assume that the latter are typically uncomputable (tmecafhat this selection rule does not refer yobut only usesx
generic real numbers are uncomputable) this sample site was well as some random string as additional input) and that
never be attained. the selection can be performed by a program of ler@th).

The general idea of MDL [39] also suggests the following@note the subsample by
causal inference principle: Assume we are given the data
points(z;,y;) with j =1,...,m and consider the MDL esti-
matorsP,,(X) and P, (Y| X). They define a joint distribution with I < m. The above selection of indices defines also a
that we denote by’x_.y (X,Y) (where we have dropped. subsample of/-values

for convenience). The total description length - .
“ Y =Y Y5 =YLy Y1

X =Ty L] = Tjyy---,T5,

Cx—y = K(Pu(X)+K(Pa(Y]X)) (31) :
m By construction, we have
— IOgPX*,y Tjy Y4 - -
j; (5, 43) Ui = q;,(Ti, M).

measures the complexity of the probabilistic model plus thdence we can draw the causal structure depicted in fig. 8,
complexity of the data, given the model. right.

The following remarks may provide a better intuition about Let now Dx be any string that is derived from by some
the expression (31). In “classical MDL", the complexity of a program of lengthO(1). Dx may be the full description
element in a continuously parameterized family of distribof relative frequencies or angomputabledensity estimator
tions withd parameters is measured(@g2) logm+O(1) bits. P(X), or some other description of interesting properties of
The first two terms in eq. (31) correspond to the right hand sithe relative frequencies. Similarly, lédy x be a description
of eq. (26) and the last term to the logarithm of eq. (2). Thehat is derived fromx,y by some simple algorithmic rule.
we compareC'x_.y to Cy_ x (defined correspondingly) andThe idea is that it is a computable estimafB(rY|X) for the
prefer the causal direction with the smaller value. If théi-op conditional distributionP(Y|X) or any relevant property of
mization in eq. (30) and the corresponding one for condition the latter. Instead of estimating conditionals, one may als
is restricted to a set of marginals and conditionals wittbzeconsider an estimator of theint density of the subsample.
complexity, the method thus reduces to a maximum likelihodtfe augment the causal structure in fig. 8, right, witk and
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Fig. 8. (left) Causal structure between single observations .., zm,y1, .. ., ym for sampling fromP(X,Y’), given the causal structure
X — Y. The program®; computez; from the description of the sourcg. The programsy; computey; from z; and the description of
the machineM, respectively. The grey nodes are those that are seleatebgfsubsample (see text). Right: Causal structure relajri;,
andy;. Note that the causal relation betwegnandy; is the same as the one between the correspondingepaindy;. Here, for instance,
T3 = x4 andgs = y4 and it is thus still the same progragm that computegys from x4 and M. Hence, the causal model that link¢ with
the selected valueg; andy; is the subgraph of the graph showing relations betwegny; and M. This kind of robustness of the causal
structure with respect to the selection procedure will beduselow.

Dy x. The structure can be simplified by merging nodes in To show that the above procedure can also be applied
the same level and we obtain the structure in fig. 9. to data sampled fromncomputableprobability distributions,

To derive testable implications of the causal hypothesiet P, and P; be uncomputable distributions of®,1} and
we observe that every information betwe&hy and Dyx Ao, A1 uncomputable stochastic maps frdity, 1} to {0, 1}.

is processed vi. We thus have Define a string-valued random variablé with distribution
~ P(X) := P, as in Definition 5 and the conditional distribution
Dyx 1 Dx[x*, (32) of a string-valued variabl&” by P(Y|X) := A, as in

Definition 6 for stringse,d € {0,1}". Let P, and P, as well
which fOI‘mally follows from the global Markov condition in asAO andAl be known up to an accuracy that is sufficient to
Theorem 3. Using Lemma 8 and eq. (32) we conclude gjstinguish between them. We assume that all this infoonati

~ n (includingn) is given as background knowledge, kuandd
I(Dx : Dyx) <I(x:Dx). (33) are unknown. LetDyx =: ¢, whereé is the estimated value
of ¢ computed from the finite sampte of sizem. Likewise,
The intention behind generating the subsanxpieto “blur” let Dyy := d be the estimated value of derived from the
the distribution of X in the sense that the subsample doesibsamplgx,¥) of sizem. If m is large enough (such that
not contain any noteworthy amount of algorithmic inforroati alsom is sufficiently large) we can estimateandd, i.e,¢ = ¢
on P(X). If we have a density estimatoP(X) we try andd = d with high probability. The most radical method to
to choose the subsample such that the algorithmic muteédlsure thak shares little information wittx and P(X) is the
information betweenx and P(X) is small. Otherwise we following. Choose some such that every possible-value
have not sufficiently blurred the distribution &f. Then we occurs at least times inx. If 2! .zt is the lexicographic
apply an arbitrary conditional density est|maf6(rY|X) tothe order of thel possiblez-values, We defme
subsample. If there still is a non-negligible amount of nalitu
information betweerPx and P(Y'|X), the causal hypothesis Fom gl gl g2 g2 gl gt
in fig. 6, left, cannot be true and we rejekt— Y. N
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variable whose value is always the constant steireg {0, 1}".
Let P(X|Y) be the mechanism that generafédy truncating
either thel leftmost digits or thd rightmost digits ofY” (each
with probability 1/2). We denote these strings ly.s and
aright, respectively. Assume we have two observations=
Aleft, Y1 = ¢ aNd X2 = aright, Y2 = a. We define a subsample
by selecting only the first observatiah := z1 = ajr; and
71 :=y1 = a. Then we defindx := x1, z2 andDyy := Y1
We observe that the mutual information betwePry and
Dx is K (a), while the mutual information betweeb x and
x is only K (ajef). Given generic choices af, this violates
condition (33) and we reject the causal hypothesis- Y.

()

D. Plausible Markov kernels in time series

Time series are interesting examples of causal structures
where the time order provides prior knowledge on the causal
direction. Since there is a large number of them availaldmfr
all scientific disciplines they can be useful to test causfri
ence rules on data with known ground truth. Let us consider
the following example of a causal inference problem. Given a
Fig. 9. Dx is some information derived from. The idea is that it M€ Series and the prior knowledge that it has been gererate
is a density estimator foP(X) or that it describes properties of theby a first order Markov process, but the direction is unknown.
empirical distribution ofz-values. If the selection proceduse — Formally, we are given observations, zs, 23, . . . , Z,, COrre-

% has sufficiently blurred this information, the mutual infation . .
betweenx and Dx is low. Dxy on the other hand, is a densitySpondlng to random variable¥;, Xs, ..., Xy, such that the

estimator forP(Y'|.X) or it encodes some desired properties of theausal structure is either

empirical joint distribution ofc- andy-values in the subsample. If the

mutual information betwee® x and Dy x exceeds the one between = X2 Xo—= X3 — Xy — e (34)
% and Dx, we reject the hypothesi& — Y.

‘@L@7@

or
. e X Xo =Xy = Xy e (35)
For eachj = 1,...,¢ we randomly assign each copy of
with some indexi for which z; = z7. The stringy is then Where we have extended the series to infinity in both direc-
defined by concatenating the corresponding valyesSiven tions.
the set of possible-values as background knowledge, the only The question is whether our theory also helps to infer the
algorithmic information thak then contains is the descriptiontime direction by using some asymmetry of the joint distri-

of r, i.e.,log, r bits. Hence we have bution® Let us assume now that the graph (34) corresponds
N to the true time direction. Then the hope is tH4tX;|X})
I(Dx :x) <logyr. is simpler, in some reasonable sense, tfX;|X; ). At

first glance this seems to be a straightforward extension of
the principle of plausible Markov kernel discussed in Sgbse
I(Dx : Dxy) o, tion IlI-A. However, there is a subtlety with the justificaiti
. N when we apply our ideas to stationary time series:
provided that the estlr_na_'uon was correc_t. As shown at the endRecall that the principle of minimizing the total complexit
of Subsection IlI-A, this is already possible for= O(logn), . L
. of all Markov kernels over all potential causal directiorash
€ - been derived from the independence of the true Markov ker-
I(Dx : %) € O(logy n), nels (remarks after eq. (26)). However, the algorithmiceind
which violates ineq. (33). The importance of this exampleendence of?(X,;|PA;) = P(X;|X,_1) and P(X;|PA;) =
lies in the fact that/(P(X) : P(Y|X)) is not well-defined P(X;|X;_1) fails spectacularly because stationarity implies
here becauseé’(X) and P(Y|X) both are uncomputable.that these Markov kernelsoincide and represent a causal
NeverthelessP(X) and P(Y|X) have a computable aspectmechanism that is constant in time. This shows that the
i.e, the stringsc and d characterizing them. Our strategy igustification of minimizing total complexity breaks downrfo
therefore suitable to detect algorithmic dependencesesatw Stationary time series.
computableaspects ofincomputable@robability distributions.  The following argument shows that not only the justification
It is remarkable that the above scheme is general enodgieaks down but also the principle as such: Consider the
to include also strategies for very small sample sizes peali

that the probability space is large. To describe an extrease,c _141] describes an asymmetry that sometimes helped to fgetiie
direction in empirical time series. [42] describes a phgistoy model that

We Con.Sider again the example with the truncated Stringsdn)vides a thermodynamical justification, but the relatafrthese results to
fig. 7 with the role ofX andY reversed. Lel” be a random the algorithmic Markov condition is not obvious.

Assume now that = d. Then
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case where?(Xj;) is the unique stationary distribution of theThe fact that the initial distribution of the hypotheticabpess

Markov kernelP(X,1|X;). Then we have

+ Xj—= Xj-1 > = Xo

K(P(X;|X;11)) < K(P(Xj11,X;)) £ K(P(X;11]X;)) . L o g y

] - ) ) shares algorithmic information with the transition protiibs

Because the forward time conditional describes uniquety thores the hypothesis suspicious.

backward time conditional (via implying the description of

the unique stationary marginal) the Kolmogorov complexity

of the latter can exceed the complexity of the former only bgesolving time series

a constant term. o
We now focus omonstationary time series. To motivate W€ have seen that the algorithmic dependence between

the general idea we first present an example described in [48]itial condition” and “transition rule” of the backwardroe
Consider a random walk of a particle @hstarting at € 7. PfOCess (which would be surprising if it occurred for the-for

In every time step the probability isto move one site to the Ward time process) represents an asymmetry of non-stajiona
right and(1 — ¢) to move to the left. LetX; with j = 0,1 time-series with respect to time reflection. We will now diss
: i =0,1,...

be the random variable describing the position after g’tepthis asymmetry after resolving the statistical sample into

Then we haveP(X, = 2) = 1. The forward time conditional Individual observations.

reads .Assume we are givem instances oh-tgples;vgi), . ,xﬁf)
for vt =+ 1 with i = 1,...,m that have been i.i.d. sampled from
9 AR P(Xy,...,X,)andXy,..., X, are part of a time series that
P(xj+1|xj) = 1—gq for Tjy1 = Tj — 1

can be described by a first order stationary Markov process.
Our resolution of a statistical sample generatedby— Y

To compute the backward time conditional we first computgntained a sourcé and a machiné/. The source generates
P(X;) which is given by the distribution of a Bernoulli z-values and the machine generatesalues from the input
experiment withj steps. Letk denote the number of right ;. The algorithmic independence 6f and M was essential

0 otherwise .

moves, i.e.,j — k is the number of left moves. With; = for the asymmetry between cause and effect described in
k—(j —k)+2z=2k—j+z we thus obtain Subsection I1I-B. For the causal chain
P(z;) = qk(l—qyk<2) = X1 = Xo— X3 — -
_ q(j+zj7z)/2(1 o q)(jzj+z)/2< ' J ) ~we would therefore have machings; generating the ;-value
(J+zj—2)/2 from z,;_,. However, for stationary time-series alf; are the
Elementary calculations show samemachine. The causal structure of the resolution of the
Pa;) statistical sample forn = 2 is shown in fig. 10, left.
P(zjlzjy) = Prjpale)5—2= This graph entails no independence constraint that is asym-
_ P(wj+1) metric with respect to reversing the time direction. To $gg, t
U*”f# for x;=x;41—1 recall that two DAGs entail the same set of independences if
= U=zj+2)/241  fop T = xjo1 + 1 and only if they have the same skeleton (i.e. the correspondi
'7"61 otherwise . undirected graphs coincide) and the same set of unshielded

colliders @-structures), i.e., substructurds— C « B where

The forward time process is specified by the initial cony jnq B are non-adjacent (Theorem 1.2.8 in [1]). Fig. 10 has
dition P(X,) (given by z) and the transition probabilities

. - v Lo ~>no suchv-structure and the skeleton is obviously symmetric
P(Xj,...,X1]/Xo) (given byp). A priori, these two “objects with respect to time-inversion.
are mutually unrelated, i.e.,

The initial part is, however, asymmetric (in agreement with

K(P(Xo), P(X;, X, 1,...,X1|X0)) £ the asymmetries entailed by fig. 6, left) and we have
+
K(z)+ K(q).

This is just the finite-sample analog of the statement that th
initial distribution P(X,) and the transition rulé>(X ;| X;_1)
are algorithmically independent.

On the other hand, the description®BfX ) (the “initial condi-
tion” of the backward time process) alone already requines t
specification obothz andq. The description of the “transition
rule” P(Xq,...,X;_1]|X;) refers only toz. Assumingz L ¢,
we thus have IV. DECIDABLE MODIFICATIONS OF THE INFERENCE RULE

+
K(P(X;))+K(P(Xo, X1,..., X;1|X;)) =2K(2)+K(q) . To use the algorithmic Markov condition in practical ap-
+ 0 because the number of nodes iQllcatlon_s we have to _replace it Wlttomputab_lenotlons_ of
complexity. The following two subsections discuss diffare
N directions along which practical inference rules can bestev
I(P(Xj) ZP(Xo,Xl,...,Xj_1|Xj)):K(Z). oped.

Here, we have sek ()
always considered constant throughout the paper. Hence
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Fig. 10. Left: causal graph of a time series. The valm%’g corresponds to thgth instance at time. Right: the initial part of the time-series
is asymmetric with respect to time-inversion.

A. Causal inference using symmetry constraints edly applying a doubly stochastic matrik = (a;;); j=1,....N

We have seen that the algorithmic causal Markov condltlc\)’wth @i 1-2pforp € (0 1./2) and a;; p for
Lo .13 = j £ I(mod N). The stochastic map! thus defines a
implies that the the sum of the Kolmogorov complexities .

S . fandom walk and we have by assumption

of the Markov kernels must be minimized over all possible
causal graphs. In practical applications, it is naturakfolace P(Y)=A"P(X)

the minimization of Kolmogorov complexity with a decidablef
simplicity criterion even though this makes the relatiorthe orNsoc\)ArlnSsz gsIE'which causal hypothesis is more likely: (1)

B o, I i Sl YAV ha been cbnd o X b some stochas e
P emp y . (2) P(X) has been obtained frofi(Y") by some stochas-

inference rules whose relation to Kolmogorov complexity > - .
9 plexity Gic map M. Our assumptions already contain an example

thr:at corresponds to the first hypothesid (= A™). Clearly,
‘ere also exist mapd/ for hypothesis (2). One example
would be

conditionals is closer than it may seem at first glance.
Moreover, the example below shows a scenario where
causal hypothesi& — Y can already be preferred 16 — X
by comparing only thenarginaldistributionsP(X) and P(Y) R
and observing that a simple condition@(Y'|X) leads from M :=[P(X),P(X),...,P(X)], (36)
B e e el e 1 o.M 1 te probabity vecta(X) n every column
) To describe in which sens& — Y is the simpler hy-

why the identification of causal directions is often easaar f hesi b hat | 36) alread ins th
robabilistic causal relations than fodeterministicones, a pot EsIs We observe t .M in eq. (36) already contalns.t €
P y description of the positiona,...,n; whereasM = A™ is

Eglnr][te;ft\at has also been pointed out by Pearl [1] in a dlm:"repather simple. The Kolmogorov complexity dff as chosen
Consider the discrete probability spafg ..., N}. Given g;)ove Is for a generic choice of the positions....., . given

two distributionsP(X), P(Y) like the ones depicted in fig. 11 - n N

for N = 120. The marginalP(X) consists ofk sharp peaks K(M)=K(P(Y)) = log <k> ;

of equal height at positions, ..., n; and P(Y) also hask

modes centered at the same positions, but with greater widtthere £ denotes equality up to a term that does not depend

We assume thaP(Y") can be obtained fron?(X) by repeat- on N. This is because different locations, ..., n; of the



24

0.25 T T T T T 0.045

0.04 -

o2r 0.035
0.03F

0.15F
0.025

0.02-
0.1f

0.015

0.05 0.01r

0.005 -

Fig. 11. Two probability distributionsP(X) (left) and P(Y") (right) on the se{1,...,120} both having4 peaks at the positions, . .., na,
but the peaks inP(X) are well-localized and those @?(Y') are smeared out by a random walk

original peaks lead to different distributiof¥Y") and, con- equivalence class. The above “data processing argument”
versely, every suclP(Y) is uniquely defined by describingimplies
the positions of the corresponding sharp peaks &@hd I(X;J|R) < I(Y; J|R). (38)
However, we want to prove that also other choices\bf
necessarily have high values of Kolmogorov complexity. Wehen we have:
first need the following result.
Lemma 10 (average complexity of stochastic maps): I(X;J)
Let (Q;(X))j=1,....c and(Q;(Y"));=1,..... be two families of
marginal distributions ofX’ andY’, respectively. Moreover, let
(A;)j=1,...¢ be a family of not necessarily different stochastic

matrices withA4;Q;(Y’) = Q;(X). Then The first equality follows becaus® contains noadditional
‘ information onX (when. is known) since it describes only
EZK(AJ’) >I1(X;J)—1(Y;J), (37) from which equivalence clagsis taken. The second equality
¢ = is a general rule for mutual information [4]. The first inetitya
usesI(X : R) < H(R). The last inequality follows similar as
the equalities in the first line. Let now, denote the number
of times B, occurs in the se{A;};=1, ... The distribution
of R is formally defined viap(r) := n,./£. Then we have

> _p(rK(B,) > H(R). (39)
J denotes the random variable with valugs Here, H(.) r

denotes the Shannon entropy ah@”; /) is computed in & Thjs follows easily from Jensen’s inequality [4] via
similar way asl(X; J) using@;(Y) instead ofQ;(X).

I(X;J,R) = I(X;R) + I(X; J|R)
H(R)+I(Y;J|R)
H(R)+1(Y;J).

[VANVAN

where the information thak contains about the index is
given by

106) = H(3 0 Q500) - 7 3 H(@;(X)).

2—K(B,\) 3
Proof: The intuition is the following. Iff(X;.J) is properly ZP(T) log o) < 105’;22 KB <o,
greater than/(Y’; J), it is not possible that alld; coincide r r
because applying a fixed stochastic matrix cannot increaggere the last step uses Kraft's inequality. Recalling that

processing inequality. Applyingl; can only increase the in- completes the proof]
formation onJ by the amount of information that the matrices

A; contain about/. Then the statement follows because th&o apply Lemma 10 to the above example we define families
average Kolmogorov complexity of a set of objects cannot laf ¢ := (],Z) distributionsP;(X) having peaks of equal height
smaller than the entropy of the probability distributiortieéir at the positions:1,...,n, and also their smoothed versions
occurrence. P;(Y). Mixing all probability distributions will generate the
To show this formally, we define a partition ¢f.,...,¢} entropylog N for P;(X) because we then obtain the uniform
into d setsSy,...,Sq for which the A; coincide. In other distribution. Since we have assumed ti#(Y") is obtained
words, we haved; = B, if ;7 € S, and the matrices from P;(X) by a doubly stochastic map, mixing aft;(Y")
By,...,By are chosen appropriately. We define a randoaiso yields the uniform distribution. Hence the difference
variable R whose valuer indicates thatj lies in the rth between/(X : J) andI(Y : J) is simply given by the average
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g X10° Definition 7 (translation covariance):

Let X,Y be two real-valued random variables. A conditional
distribution P(Y'| X') with density P(y|x) is called translation

i covariant if

P(y|lz +t) = P(y — t|z) vt e R.

Translation covariant conditionals are always given by-con
v, volutions with some probability measure. Therefore, they ¢
|| v never decrease the entropy. Increase of entropy can therefo
i v guantify the amount of non-covariance. We want to describe
! ' further options for quantifying non-covariance. To thislewe
so w0 1000 jntroduce a concept from statistical estimation theonyj:[44
Definition 8 (Fisher information):

Fig. 12. Two probability distributionsP(X) (solid) and P(Y) Let P(x) be a continuously_ diﬁer_entiable_probgbility density
(dashed) where”(Y) can be obtained fromP(X) by convolution of P(X) on R. Then the Fisher information with respect to

0 L L L
0 100 200 300 400 500

with a Gaussian distribution the translation is defined as
d 2
entropy difference F(P(X)) = / (@mp(x)) P(x)dz .
I
1 Actually, Fisher information is defined for &mily of
AH = - H(P;(Y)) - H(Pj(X))) . '
4 ;( (F(Y) (B3 ))) distributions. The above expression is obtained by defining

the family of shifted densities vi&; () := P(z —t).
The Kolmogorov complexity required to map (Y) to P;(X)  Then we have the following Lemma (see Lemma 1 in [45]
is thus, on average over gl at least the entropy generated byhowing the statement in a more general setting that inslude
the double stochastic random walk. Hence we have shown th@dy quantum stochastic maps):
a typical example of two distributions with peaks at arbitra | smima 11 (monotonicity under covariant maps):

positionsny, ...,n; needs a procesd/ whose Kolmogorov | ot P(X,Y) be a joint distribution such thaP(Y|X) is

complexity is at least the entropy difference. translation covariant. Then
One may ask why to consider distributions with several
peaks even though the above result will formally also apply F(P(Y)) < F(P(X)).

to distributionsP;(X) and P;(Y") with only one peak. The
problem is that the statement “two distributions have a peakThe intuition is thatF' quantifies the degree to which a
at the same position” does not necessarily make sense d@tribution is non-invariant with respect to translasoand
empirical data. This is because the definition of variabtes that no translation covariant process is able to increase th
often chosen such that the distribution becomes centdalizeneasure. The convolution with a non-degenerate distabuti
The statement thahultiple peaks occur on seemingly randondecreases the Fisher information. Hence there is no ttaorsla
positions seems therefore more sensible than the statéhatntcovariant stochastic map in backward direction.
onepeak has been observed at a random position. We can also consider more general symmetries:

We have above used a finite number of discrete bins inDefinition 9 (general group covariance):
order or keep the problem as much combinatorial as possillet X, Y be random variables with equal ran§e Let G be
In reality, we would rather expect a scenario like the one @ group of bijectionsy : S — S and X9 and Y9 denoting
fig. 12 where two distributions ofiR have the same peaks,the random variables obtained by permuting the outcomes of
but the peaks in the one distribution have been smoothed, fhe corresponding random experiment accordingy.td’hen

example by an additive Gaussian noise. we call a conditionalP(Y|X) G-covariant if
As above, we would rather assume thatis the cause of .
Y than vice versa since the smoothing process is simpler than PYIX))=PY|X7 ) VgeG.

any process that leads in the opposite direction. We emphasi

thatdenoisingis an operation that cannot be represented by alt is easy to see that covariant stochastic maps define a
stochastianatrix, it is a linear operation that can be applied tguasi-order of probability distributions o$i by defining” >

the whole data set in order to reconstruct the original peaks if there is a covariant stochastic mapsuch thatAP = P.

the corresponding matrix contains also negative entrigg. TThis is transitive since the concatenation of covariant snap
statement is thus that no simggtochastic procesieads in the again covariant.

opposite direction. To further discuss the rationale behiis If a G-invariant measure: (“Haar measure”) exists ofw
way of reasoning we introduce another notion of simplicitwe can easily define an information theoretic quantity that
that does not refer to Kolmogorov complexity. To this endneasures the degree of non-invariance with respect:to

we introduce the notion of translation covariant condigibn Definition 10 (reference information):

probabilities: Let P(X) be a distribution or andG be a group of measure
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preserving bijections ort with Haar measure:. Then the is not, we tend to prefer the causal hypotheXis— Y to

reference information is given by: Y — X. Rather than justifying such a conclusion by Occam’s
Razor only, we have described the link to the algorithmic
I = H (/ P[Xg}d,u(g)) —/ H(P(Xg))du(g) independence of conditionals. For our examples the non-
G G covariance ofP(X|Y") expressed the fact that this conditional
- (/ p[X.(J} du(g)) ~ H(P(X)). (40) Was adapted to the specific instancert(ft").
€]

The name “reference information” has been used in [46] {9 Resource-bounded complexity

a slightly different context where this information oceegras h bl hat th b ¢ linf
the value of a physical system for communicating a referenceT_ € pro e(;n t_datbtl € prrt]asendcef_orda §enl(<:e|o mutual infor-
system (e.g. spatial or temporal) wheéé describes, for mation is undecidable (when defined via Kolmogorov com-

instance, translations in time or space. For non-compactgy plexities) is similar to statistics, but also different ither
(translations of aperiodic functions), however, there r{eTpegts. L(;et us f|r-stb1|‘o;usyor_1 t_he_ analoggl. leenhtwobreal-
averaging operation. For the groliy the Fisher information valued random variables, Y, it Is impossible to show by

thus provides a better concept to quantify the non-invmsianf'mte sampling that they are statistically independefitl ¥

under the group operation. The quantify can easily be IS _equwalent tE(f(X)g(Y)) :_E(f(X))E(g(Y)) for every
interpreted as mutual informatioh(X : Z) if we introduce pair (f, g) of measurable functions. If we observg S|gn_|f|cant
a G-valued random variableZ whose values indicate which porrelatlons t.)et_weerf().() gpd 9(Y) fpr some parr defined
transformationy has been applied. One can thus show flaat in advance, it is well-justified to reject independence. The

is non-increasing with respect to eve@ycovariant map [46], same holds if such correlations are detectedffay in some
[47] g P oy P [46] sufficiently small set of functions (cf. [48]) that was defihia

%dvance. However, if this is not the case, we can never be sure

The following model describes a link between inferrin . _ oo )
at there is not some pair of arbitrarily complex functions

causal directions by preferring covariant conditionalsrov . L
non-covariant ones to preferring directions with algorith f,g that are correlated with respect to the true distribution.

cally independent Markov kernels. Consider first the prob!‘;{lkew'se’ if we have two strlng&,y and find no simple
bility space S := {0,1}. We define the groufs? :— Z, — program that computes from y this does not mean that there
’ T ! > is no such a rule. Hence, we also have the statement that there

0,1 , i.e., the additi f int d A )
(0.1}, @), i.e e additive group of integers modul can be an algorithmic dependence even though we do not find

acting onS as bit-flips or identity. For any distribution on
P on {0, 1}, the reference informatiofi; (P) then measures It . - T
the asymmetry with respect to bit-flips. Here, the first term Hovyever, _the difference to the stat|st|cgl Situation s the
on the right hand side of eq. (40) here is the entropy of tﬁ%"ow'”g- Gl\./e.n that we have found funCt.IOI_]]Sg y_|eI(j|.ng
uniform distribution and we obtain: correlations it is only a matter of the statistical significa
level whether this is sufficient to reject independence. For
Io(P) =log2— H(P). algorithmic dependences, we do not even have a decidable
) ) o criterion to rejectindependence. Given that we have found a
Hence, the decrease of reference information coincides hgfmple program that computesfrom y, it still may be true

with an increase of entropy. . thatI(z : y) is small because there may also be a simple
More generally speaking, it can happen for two distribuion, e to generate: (which would imply I(z : y) ~ 0) that we

P and P that aG;-symmetric stochastic matrix leads frof \yere not able to find. This shows that we can neither show
to P, but only asymmetric stochastic maps conveértinto dependence nor independence.

P. To give a more interesting example where the relation t0 5e nossible answer to these problems is that Kolmogorov
algor|thm|c |n_format|on becomes_more evu_:ient is the fOHOWcompIexity is only an idealization of empirically decidabl
Ng. We consider t_he_grouﬁg acting on strings (_)f Igng?ln guantities. Developing this idealization only aims at pdev

by independent bit-flips. Assume we have a distribution QRg pints in which directions we have to develop practical
{0,1}™ of the formP.. in Definition 5 for some string: and  jnference rules. Compression algorithms have already been
generate the distributioR.. by applying/ to P. where developed that are intended to approximate, for instaee, t

1—6 €1 1—e € algorithmic information of genetic sequences [49], [S50he@
M = < €1 1—e > ( € 1— e ) "** et al [50] constructed a “conditional compression schetoe”
1—e, . gpproximate _conqlitional Kolmogorov gomplexity gnd apthlie
® < 0 l—e, > it to the estimation of the algorithmic mutual information

between two genetic sequences. To evaluate to which extent
with ¢; € (0,1). ThenM is G-symmetric, but n@z-symmetric methods of this kind can be used for causal inference using
process leads backwards. This is because every such dioch#ise algorithmic Markov condition is an interesting subjett
map would be asymmetric in a way that encodgse., the further research.
map would have “to knowe becausel/ has destroyed some It is also noteworthy that there is a theory oesource-
amount of information about it. boundeddescription complexity [22] where compressions of
We summarize the general idea of this subsection as follows.are only allowed if the decompression can be performed
If we observe thatP(Y'|X) is group-covariant buf?(X|Y) within a previously defined number of computation steps and
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on a tape of previously defined length. An important advaatagf n random variablesXy, ..., X,,. Algorithmic informa-
of resource-bounded complexity is that it is computablee Thion theory thus replaces statistical causal inferencé \ait
disadvantage, on the other hand, is that the mathematipadbability-free formulation.
theory is more difficult. Parts of this paper have been d
veloped by converting statements on statistical depereden
into their algorithmic counterpart. The strong analogynsn
statistical and algorithmic mutual information occurs yonl
for complexity with unbounded resources. For instance, t
symmetryI(z : y) = I(y : z) breaks down when replacing
Kolmogorov complexity with resource-bounded versiong [22(3) New statistical causal inference rules follow becawaesal
Nevertheless, to develop a theory of inferred causationgusihypotheses are suspicious if the corresponding Markowekern
resource-boundedomplexity could be a challenge for theare algorithmically dependent. Remarkably, this criterean
future. There are several reasons to believe that takirg i principle be used to reject a causal hypothesis without
account computational complexity can provide additionaish comparing it to another hypothesis. If all causal DAGs under
on the causal structure: consideration are rejected because independence of wondit
Bennett [51], [52], [53], for instance, has argued that th@ls holds for none of the causal directions, the model class i
logical depthof an object echoes in some sense its historf@o small (e.g. one has to account for hidden common causes
The former is, roughly speaking, defined as follows. ket rather than assuming that the observed variables are gausal
be a string that describes the object ande its shortest sufficient).

description. Then the logical depth ofis the number of time 506 aigorithmic mutual information is uncomputable be-
steps that a parallel computing device requires to comput& g se Kolmogorov complexity is uncomputable, we have
from s. According to Bennett, large logical depth indicate§iscyssed some ideas on how to develop inference rules that

that the object has been created by a process that consis{gd \otivated by the uncomputable idealization.
of many non-trivial steps. This would mean that there also is

some causal information that follows from the time-resesrc
required to compute a string from its shortest description.
The time-resources required to compute one observatio
from the other also plays a role in the discussion of caugimments.
inference rules in [43]. The paper presents a model where the

ii) Causal relations among individual objects can be iefierr
provided their shortest descriptions are sufficiently ctaxp
Then the Kolmogorov complexities must be estimated, e.g.,
r?é’ thg compression length with respect to appropriate com-
pression schemes.
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